AutoTrain fail (Bug #4030)
Description
If i modify the sample to use trainAuto, it fails:
Starting training process OpenCV Error: Bad argument (While cross-validation one or more of the classes have been fell out of the sample. Try to enlarge <CvSVMParams::k_fold>) in do_train, file /data/mfontaine/opencv/modules/ml/src/svm.cpp, line 1400 terminate called after throwing an instance of 'cv::Exception' what(): /data/mfontaine/opencv/modules/ml/src/svm.cpp:1400: error: (-5) While cross-validation one or more of the classes have been fell out of the sample. Try to enlarge <CvSVMParams::k_fold> in function do_train
whatever the k_folds value is.
Related issues
related to Bug #4464: class_labels of SVM::trainAuto is not consistent with tha... | Done | 2015-07-05 |
Associated revisions
Bugfix: #4030 SVM auto-training.
Merge pull request #4030 from asmorkalov:as/accurate_cuda_arch_aarch64
History
Updated by wooden glider over 10 years ago
mathieu fontaine wrote:
If i modify the sample to use trainAuto, it fails:
[...]
whatever the k_folds value is.
Hi mathieu fontaine !
as you probably already know, the k-fold cv is defined as to partition the original sample set to exactly k sub sets and cross validate them. so, the parameter k must be dividable by the sample size, otherwise will results in the inconsistancy due to the final one sub set is smaller then others.
send in a parameter k that is dividable by the sample size may solve this problem.
plz let us know whether your problem is solved.
hope helpful!
Updated by wooden glider over 10 years ago
- % Done changed from 0 to 50
Updated by wooden glider over 10 years ago
- Status changed from New to Cancelled
Updated by mathieu fontaine over 10 years ago
like i said, no matter what the value of k_fold is, it doesn't work. And i think that you mean that k_fold must be a divisor of the sample size. you can try this:
#include <iostream> #include <opencv2/core.hpp> #include <opencv2/imgproc.hpp> #include "opencv2/imgcodecs.hpp" #include <opencv2/highgui.hpp> #include <opencv2/ml.hpp> #define NTRAINING_SAMPLES 100 // Number of training samples per class #define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part using namespace cv; using namespace cv::ml; using namespace std; static void help() { cout<< "\n--------------------------------------------------------------------------" << endl << "This program shows Support Vector Machines for Non-Linearly Separable Data. " << endl << "Usage:" << endl << "./non_linear_svms" << endl << "--------------------------------------------------------------------------" << endl << endl; } int main() { help(); // Data for visual representation const int WIDTH = 512, HEIGHT = 512; Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3); //--------------------- 1. Set up training data randomly --------------------------------------- Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1); Mat labels (2*NTRAINING_SAMPLES, 1, CV_32SC1); RNG rng(100); // Random value generation class // Set up the linearly separable part of the training data int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES); // Generate random points for the class 1 Mat trainClass = trainData.rowRange(0, nLinearSamples); // The x coordinate of the points is in [0, 0.4) Mat c = trainClass.colRange(0, 1); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1,2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); // Generate random points for the class 2 trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES); // The x coordinate of the points is in [0.6, 1] c = trainClass.colRange(0 , 1); rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1,2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); //------------------ Set up the non-linearly separable part of the training data --------------- // Generate random points for the classes 1 and 2 trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples); // The x coordinate of the points is in [0.4, 0.6) c = trainClass.colRange(0,1); rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH)); // The y coordinate of the points is in [0, 1) c = trainClass.colRange(1,2); rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT)); //------------------------- Set up the labels for the classes --------------------------------- labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1 labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2 //------------------------ 2. Set up the support vector machines parameters -------------------- SVM::Params params; params.svmType = SVM::C_SVC; params.C = 0.1; params.kernelType = SVM::LINEAR; params.termCrit = TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6); //------------------------ 3. Train the svm ---------------------------------------------------- cout << "Starting training process" << endl; Ptr<TrainData> td = TrainData::create(trainData,ROW_SAMPLE,labels); Ptr<SVM> svm = SVM::create(params); svm->trainAuto(td,10); cout << "Finished training process" << endl; //------------------------ 4. Show the decision regions ---------------------------------------- Vec3b green(0,100,0), blue (100,0,0); for (int i = 0; i < I.rows; ++i) for (int j = 0; j < I.cols; ++j) { Mat sampleMat = (Mat_<float>(1,2) << i, j); float response = svm->predict(sampleMat); if (response == 1) I.at<Vec3b>(j, i) = green; else if (response == 2) I.at<Vec3b>(j, i) = blue; } //----------------------- 5. Show the training data -------------------------------------------- int thick = -1; int lineType = 8; float px, py; // Class 1 for (int i = 0; i < NTRAINING_SAMPLES; ++i) { px = trainData.at<float>(i,0); py = trainData.at<float>(i,1); circle(I, Point( (int) px, (int) py ), 3, Scalar(0, 255, 0), thick, lineType); } // Class 2 for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i) { px = trainData.at<float>(i,0); py = trainData.at<float>(i,1); circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick, lineType); } //------------------------- 6. Show support vectors -------------------------------------------- thick = 2; lineType = 8; Mat sv = svm->getSupportVectors(); for (int i = 0; i < sv.rows; ++i) { const float* v = sv.ptr<float>(i); circle( I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType); } imwrite("result.png", I); // save the Image imshow("SVM for Non-Linear Training Data", I); // show it to the user waitKey(0); }
- Status changed from Cancelled to Incomplete
Updated by Serhiy M about 10 years ago
mathieu fontaine wrote:
If i modify the sample to use trainAuto, it fails:
[...]
whatever the k_folds value is.
Same error.
Even with different training set/features (bigger).
Updated by Sancho McCann almost 10 years ago
Is this being worked on? I can volunteer if nobody else is already.
Updated by Sancho McCann almost 10 years ago
Pull request: https://github.com/Itseez/opencv/pull/3897
Updated by Sancho McCann almost 10 years ago
- Status changed from Incomplete to Done
- % Done changed from 50 to 100