|
1 |
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
2 |
//
|
|
3 |
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
4 |
//
|
|
5 |
// By downloading, copying, installing or using the software you agree to this license.
|
|
6 |
// If you do not agree to this license, do not download, install,
|
|
7 |
// copy or use the software.
|
|
8 |
//
|
|
9 |
//
|
|
10 |
// Intel License Agreement
|
|
11 |
// For Open Source Computer Vision Library
|
|
12 |
//
|
|
13 |
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
14 |
// Third party copyrights are property of their respective owners.
|
|
15 |
//
|
|
16 |
// Redistribution and use in source and binary forms, with or without modification,
|
|
17 |
// are permitted provided that the following conditions are met:
|
|
18 |
//
|
|
19 |
// * Redistribution's of source code must retain the above copyright notice,
|
|
20 |
// this list of conditions and the following disclaimer.
|
|
21 |
//
|
|
22 |
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
23 |
// this list of conditions and the following disclaimer in the documentation
|
|
24 |
// and/or other materials provided with the distribution.
|
|
25 |
//
|
|
26 |
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
27 |
// derived from this software without specific prior written permission.
|
|
28 |
//
|
|
29 |
// This software is provided by the copyright holders and contributors "as is" and
|
|
30 |
// any express or implied warranties, including, but not limited to, the implied
|
|
31 |
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
32 |
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
33 |
// indirect, incidental, special, exemplary, or consequential damages
|
|
34 |
// (including, but not limited to, procurement of substitute goods or services;
|
|
35 |
// loss of use, data, or profits; or business interruption) however caused
|
|
36 |
// and on any theory of liability, whether in contract, strict liability,
|
|
37 |
// or tort (including negligence or otherwise) arising in any way out of
|
|
38 |
// the use of this software, even if advised of the possibility of such damage.
|
|
39 |
//
|
|
40 |
// 2011 Jason Newton <[email protected]>
|
|
41 |
//M*/
|
|
42 |
//
|
|
43 |
#include "precomp.hpp"
|
|
44 |
|
|
45 |
namespace cv{
|
|
46 |
namespace connectedcomponents{
|
|
47 |
using std::vector;
|
|
48 |
|
|
49 |
//Find the root of the tree of node i
|
|
50 |
template<typename LabelT>
|
|
51 |
inline static
|
|
52 |
LabelT findRoot(const vector<LabelT> &P, LabelT i){
|
|
53 |
LabelT root = i;
|
|
54 |
while(P[root] < root){
|
|
55 |
root = P[root];
|
|
56 |
}
|
|
57 |
return root;
|
|
58 |
}
|
|
59 |
|
|
60 |
//Make all nodes in the path of node i point to root
|
|
61 |
template<typename LabelT>
|
|
62 |
inline static
|
|
63 |
void setRoot(vector<LabelT> &P, LabelT i, LabelT root){
|
|
64 |
while(P[i] < i){
|
|
65 |
LabelT j = P[i];
|
|
66 |
P[i] = root;
|
|
67 |
i = j;
|
|
68 |
}
|
|
69 |
P[i] = root;
|
|
70 |
}
|
|
71 |
|
|
72 |
//Find the root of the tree of the node i and compress the path in the process
|
|
73 |
template<typename LabelT>
|
|
74 |
inline static
|
|
75 |
LabelT find(vector<LabelT> &P, LabelT i){
|
|
76 |
LabelT root = findRoot(P, i);
|
|
77 |
setRoot(P, i, root);
|
|
78 |
return root;
|
|
79 |
}
|
|
80 |
|
|
81 |
//unite the two trees containing nodes i and j and return the new root
|
|
82 |
template<typename LabelT>
|
|
83 |
inline static
|
|
84 |
LabelT set_union(vector<LabelT> &P, LabelT i, LabelT j){
|
|
85 |
LabelT root = findRoot(P, i);
|
|
86 |
if(i != j){
|
|
87 |
LabelT rootj = findRoot(P, j);
|
|
88 |
if(root > rootj){
|
|
89 |
root = rootj;
|
|
90 |
}
|
|
91 |
setRoot(P, j, root);
|
|
92 |
}
|
|
93 |
setRoot(P, i, root);
|
|
94 |
return root;
|
|
95 |
}
|
|
96 |
|
|
97 |
//Flatten the Union Find tree and relabel the components
|
|
98 |
template<typename LabelT>
|
|
99 |
inline static
|
|
100 |
LabelT flattenL(vector<LabelT> &P){
|
|
101 |
LabelT k = 1;
|
|
102 |
for(size_t i = 1; i < P.size(); ++i){
|
|
103 |
if(P[i] < (int)i){
|
|
104 |
P[i] = P[P[i]];
|
|
105 |
}else{
|
|
106 |
P[i] = k; k = k + 1;
|
|
107 |
}
|
|
108 |
}
|
|
109 |
return k;
|
|
110 |
}
|
|
111 |
|
|
112 |
////Flatten the Union Find tree - inconsistent labels
|
|
113 |
//void flatten(int P[], int size){
|
|
114 |
// for(int i = 1; i < size; ++i){
|
|
115 |
// P[i] = P[P[i]];
|
|
116 |
// }
|
|
117 |
//}
|
|
118 |
const int G4[2][2] = {{-1, 0}, {0, -1}};//b, d neighborhoods
|
|
119 |
const int G8[4][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
|
|
120 |
//Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
|
|
121 |
//using decision trees
|
|
122 |
//Kesheng Wu, et al
|
|
123 |
template<typename LabelT, typename PixelT, int connectivity = 8>
|
|
124 |
struct LabelingImpl{
|
|
125 |
LabelT operator()(Mat &L, const Mat &I){
|
|
126 |
const int rows = L.rows;
|
|
127 |
const int cols = L.cols;
|
|
128 |
|
|
129 |
vector<LabelT> P; P.push_back(0);
|
|
130 |
LabelT l = 1;
|
|
131 |
//scanning phase
|
|
132 |
for(int r_i = 0; r_i < rows; ++r_i){
|
|
133 |
for(int c_i = 0; c_i < cols; ++c_i){
|
|
134 |
if(!I.at<PixelT>(r_i, c_i)){
|
|
135 |
L.at<LabelT>(r_i, c_i) = 0;
|
|
136 |
continue;
|
|
137 |
}
|
|
138 |
if(connectivity == 8){
|
|
139 |
const int a = 0;
|
|
140 |
const int b = 1;
|
|
141 |
const int c = 2;
|
|
142 |
const int d = 3;
|
|
143 |
|
|
144 |
bool T[4];
|
|
145 |
|
|
146 |
for(size_t i = 0; i < 4; ++i){
|
|
147 |
int gr = r_i + G8[i][0];
|
|
148 |
int gc = c_i + G8[i][1];
|
|
149 |
T[i] = false;
|
|
150 |
if(gr >= 0 && gr < I.rows && gc >= 0 && gc < I.cols){
|
|
151 |
if(I.at<PixelT>(gr, gc)){
|
|
152 |
T[i] = true;
|
|
153 |
}
|
|
154 |
}
|
|
155 |
}
|
|
156 |
|
|
157 |
//decision tree
|
|
158 |
if(T[b]){
|
|
159 |
//copy(b)
|
|
160 |
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[b][0], c_i + G8[b][1]);
|
|
161 |
}else{//not b
|
|
162 |
if(T[c]){
|
|
163 |
if(T[a]){
|
|
164 |
//copy(c, a)
|
|
165 |
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]));
|
|
166 |
}else{
|
|
167 |
if(T[d]){
|
|
168 |
//copy(c, d)
|
|
169 |
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]));
|
|
170 |
}else{
|
|
171 |
//copy(c)
|
|
172 |
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]);
|
|
173 |
}
|
|
174 |
}
|
|
175 |
}else{//not c
|
|
176 |
if(T[a]){
|
|
177 |
//copy(a)
|
|
178 |
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]);
|
|
179 |
}else{
|
|
180 |
if(T[d]){
|
|
181 |
//copy(d)
|
|
182 |
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]);
|
|
183 |
}else{
|
|
184 |
//new label
|
|
185 |
L.at<LabelT>(r_i, c_i) = l;
|
|
186 |
P.push_back(l);//P[l] = l;
|
|
187 |
l = l + 1;
|
|
188 |
}
|
|
189 |
}
|
|
190 |
}
|
|
191 |
}
|
|
192 |
}else{
|
|
193 |
//B & D only
|
|
194 |
const int b = 0;
|
|
195 |
const int d = 1;
|
|
196 |
assert(connectivity == 4);
|
|
197 |
bool T[2];
|
|
198 |
for(size_t i = 0; i < 2; ++i){
|
|
199 |
int gr = r_i + G4[i][0];
|
|
200 |
int gc = c_i + G4[i][1];
|
|
201 |
T[i] = false;
|
|
202 |
if(gr >= 0 && gr < I.rows && gc >= 0 && gc < I.cols){
|
|
203 |
if(I.at<PixelT>(gr, gc)){
|
|
204 |
T[i] = true;
|
|
205 |
}
|
|
206 |
}
|
|
207 |
}
|
|
208 |
|
|
209 |
if(T[b]){
|
|
210 |
if(T[d]){
|
|
211 |
//copy(d, b)
|
|
212 |
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]), L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]));
|
|
213 |
}else{
|
|
214 |
//copy(b)
|
|
215 |
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]);
|
|
216 |
}
|
|
217 |
}else{
|
|
218 |
if(T[d]){
|
|
219 |
//copy(d)
|
|
220 |
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]);
|
|
221 |
}else{
|
|
222 |
//new label
|
|
223 |
L.at<LabelT>(r_i, c_i) = l;
|
|
224 |
P.push_back(l);//P[l] = l;
|
|
225 |
l = l + 1;
|
|
226 |
}
|
|
227 |
}
|
|
228 |
|
|
229 |
}
|
|
230 |
}
|
|
231 |
}
|
|
232 |
|
|
233 |
//analysis
|
|
234 |
LabelT nLabels = flattenL(P);
|
|
235 |
|
|
236 |
//assign final labels
|
|
237 |
for(int r = 0; r < L.rows; ++r){
|
|
238 |
for(int c = 0; c < L.cols; ++c){
|
|
239 |
L.at<LabelT>(r, c) = P[L.at<LabelT>(r, c)];
|
|
240 |
}
|
|
241 |
}
|
|
242 |
|
|
243 |
return nLabels;
|
|
244 |
}//End function LabelingImpl operator()
|
|
245 |
|
|
246 |
};//End struct LabelingImpl
|
|
247 |
}//end namespace connectedcomponents
|
|
248 |
|
|
249 |
//L's type must have an appropriate depth for the number of pixels in I
|
|
250 |
int connectedComponents(Mat &L, const Mat &I, int connectivity){
|
|
251 |
CV_Assert(L.rows == I.rows);
|
|
252 |
CV_Assert(L.cols == I.cols);
|
|
253 |
CV_Assert(L.channels() == 1 && I.channels() == 1);
|
|
254 |
CV_Assert(connectivity == 8 || connectivity == 4);
|
|
255 |
|
|
256 |
int lDepth = L.depth();
|
|
257 |
int iDepth = I.depth();
|
|
258 |
using connectedcomponents::LabelingImpl;
|
|
259 |
//warn if L's depth is not sufficient?
|
|
260 |
|
|
261 |
if(lDepth == CV_8U){
|
|
262 |
if(iDepth == CV_8U || iDepth == CV_8S){
|
|
263 |
if(connectivity == 4){
|
|
264 |
return LabelingImpl<uint8_t, uint8_t, 4>()(L, I);
|
|
265 |
}else{
|
|
266 |
return LabelingImpl<uint8_t, uint8_t, 8>()(L, I);
|
|
267 |
}
|
|
268 |
}else if(iDepth == CV_16U || iDepth == CV_16S){
|
|
269 |
if(connectivity == 4){
|
|
270 |
return LabelingImpl<uint8_t, uint16_t, 4>()(L, I);
|
|
271 |
}else{
|
|
272 |
return LabelingImpl<uint8_t, uint16_t, 8>()(L, I);
|
|
273 |
}
|
|
274 |
}else if(iDepth == CV_32S){
|
|
275 |
if(connectivity == 4){
|
|
276 |
return LabelingImpl<uint8_t, int32_t, 4>()(L, I);
|
|
277 |
}else{
|
|
278 |
return LabelingImpl<uint8_t, int32_t, 8>()(L, I);
|
|
279 |
}
|
|
280 |
}else if(iDepth == CV_32F){
|
|
281 |
if(connectivity == 4){
|
|
282 |
return LabelingImpl<uint8_t, float, 4>()(L, I);
|
|
283 |
}else{
|
|
284 |
return LabelingImpl<uint8_t, float, 8>()(L, I);
|
|
285 |
}
|
|
286 |
}else if(iDepth == CV_64F){
|
|
287 |
if(connectivity == 4){
|
|
288 |
return LabelingImpl<uint8_t, double, 4>()(L, I);
|
|
289 |
}else{
|
|
290 |
return LabelingImpl<uint8_t, double, 8>()(L, I);
|
|
291 |
}
|
|
292 |
}
|
|
293 |
}else if(lDepth == CV_16U){
|
|
294 |
if(iDepth == CV_8U || iDepth == CV_8S){
|
|
295 |
if(connectivity == 4){
|
|
296 |
return LabelingImpl<uint16_t, uint8_t, 4>()(L, I);
|
|
297 |
}else{
|
|
298 |
return LabelingImpl<uint16_t, uint8_t, 8>()(L, I);
|
|
299 |
}
|
|
300 |
}else if(iDepth == CV_16U || iDepth == CV_16S){
|
|
301 |
if(connectivity == 4){
|
|
302 |
return LabelingImpl<uint16_t, uint16_t, 4>()(L, I);
|
|
303 |
}else{
|
|
304 |
return LabelingImpl<uint16_t, uint16_t, 8>()(L, I);
|
|
305 |
}
|
|
306 |
}else if(iDepth == CV_32S){
|
|
307 |
if(connectivity == 4){
|
|
308 |
return LabelingImpl<uint16_t, int32_t, 4>()(L, I);
|
|
309 |
}else{
|
|
310 |
return LabelingImpl<uint16_t, int32_t, 8>()(L, I);
|
|
311 |
}
|
|
312 |
}else if(iDepth == CV_32F){
|
|
313 |
if(connectivity == 4){
|
|
314 |
return LabelingImpl<uint16_t, float, 4>()(L, I);
|
|
315 |
}else{
|
|
316 |
return LabelingImpl<uint16_t, float, 8>()(L, I);
|
|
317 |
}
|
|
318 |
}else if(iDepth == CV_64F){
|
|
319 |
if(connectivity == 4){
|
|
320 |
return LabelingImpl<uint16_t, double, 4>()(L, I);
|
|
321 |
}else{
|
|
322 |
return LabelingImpl<uint16_t, double, 8>()(L, I);
|
|
323 |
}
|
|
324 |
}
|
|
325 |
}else if(lDepth == CV_32S){
|
|
326 |
if(iDepth == CV_8U || iDepth == CV_8S){
|
|
327 |
if(connectivity == 4){
|
|
328 |
return LabelingImpl<int32_t, uint8_t, 4>()(L, I);
|
|
329 |
}else{
|
|
330 |
return LabelingImpl<int32_t, uint8_t, 8>()(L, I);
|
|
331 |
}
|
|
332 |
}else if(iDepth == CV_16U || iDepth == CV_16S){
|
|
333 |
if(connectivity == 4){
|
|
334 |
return LabelingImpl<int32_t, uint16_t, 4>()(L, I);
|
|
335 |
}else{
|
|
336 |
return LabelingImpl<int32_t, uint16_t, 8>()(L, I);
|
|
337 |
}
|
|
338 |
}else if(iDepth == CV_32S){
|
|
339 |
if(connectivity == 4){
|
|
340 |
return LabelingImpl<int32_t, int32_t, 4>()(L, I);
|
|
341 |
}else{
|
|
342 |
return LabelingImpl<int32_t, int32_t, 8>()(L, I);
|
|
343 |
}
|
|
344 |
}else if(iDepth == CV_32F){
|
|
345 |
if(connectivity == 4){
|
|
346 |
return LabelingImpl<int32_t, float, 4>()(L, I);
|
|
347 |
}else{
|
|
348 |
return LabelingImpl<int32_t, float, 8>()(L, I);
|
|
349 |
}
|
|
350 |
}else if(iDepth == CV_64F){
|
|
351 |
if(connectivity == 4){
|
|
352 |
return LabelingImpl<int32_t, double, 4>()(L, I);
|
|
353 |
}else{
|
|
354 |
return LabelingImpl<int32_t, double, 8>()(L, I);
|
|
355 |
}
|
|
356 |
}
|
|
357 |
}
|
|
358 |
|
|
359 |
CV_Error(CV_StsUnsupportedFormat, "unsupported label/image type");
|
|
360 |
return -1;
|
|
361 |
}
|
|
362 |
|
|
363 |
|
|
364 |
}
|
|
365 |
|