1 |
|
2 |
|
3 | |
4 | This program reads in a generic trained VOC2010 sample xml params, vocabulary,
|
5 | and configuration. It works in conjunction with OpenCV's sample code
|
6 | bagofwords_classification.cpp training class, and is mostly based on its class design.
|
7 |
|
8 | 2012 Joel Mckay
|
9 | [email protected]
|
10 |
|
11 | Disclaimer:
|
12 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
13 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
14 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
15 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
16 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
17 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
18 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
19 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
20 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
21 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
|
22 | WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
23 | OF SUCH DAMAGE.
|
24 |
|
25 | *****************************************************************************************/
|
26 |
|
27 |
|
28 | #include "global_headers.hpp"
|
29 |
|
30 |
|
31 | const string paramsFile = "params.xml";
|
32 | const string vocabularyFile = "vocabulary.xml.gz";
|
33 | const string bowImageDescriptorsDir = "/bowImageDescriptors";
|
34 | const string svmsDir = "/svms";
|
35 | const string plotsDir = "/plots";
|
36 |
|
37 | |
38 | * OpenCV's Sample on image classification *
|
39 | \****************************************************************************************/
|
40 |
|
41 |
|
42 |
|
43 | struct DDMParams
|
44 | {
|
45 | DDMParams() : detectorType("SURF"), descriptorType("SURF"), matcherType("BruteForce") {}
|
46 | DDMParams( const string _detectorType, const string _descriptorType, const string& _matcherType ) :
|
47 | detectorType(_detectorType), descriptorType(_descriptorType), matcherType(_matcherType){}
|
48 | void read( const FileNode& fn )
|
49 | {
|
50 | fn["detectorType"] >> detectorType;
|
51 | fn["descriptorType"] >> descriptorType;
|
52 | fn["matcherType"] >> matcherType;
|
53 | }
|
54 | void write( FileStorage& fs ) const
|
55 | {
|
56 | fs << "detectorType" << detectorType;
|
57 | fs << "descriptorType" << descriptorType;
|
58 | fs << "matcherType" << matcherType;
|
59 | }
|
60 | void print() const
|
61 | {
|
62 | cout << "detectorType: " << detectorType << endl;
|
63 | cout << "descriptorType: " << descriptorType << endl;
|
64 | cout << "matcherType: " << matcherType << endl;
|
65 | }
|
66 |
|
67 | string detectorType;
|
68 | string descriptorType;
|
69 | string matcherType;
|
70 | };
|
71 |
|
72 | struct VocabTrainParams
|
73 | {
|
74 | VocabTrainParams() : trainObjClass("chair"), vocabSize(VISUAL_VOCABULARY_FOR_BOG), memoryUse(VISUAL_VOCABULARY_MEMORY_LIMIT), descProportion(VISUAL_VOCABULARY_DESCRIPTORS_FROM_EACH_IMAGE_PROPORTION_OF_TOTAL) {}
|
75 | VocabTrainParams( const string _trainObjClass, size_t _vocabSize, size_t _memoryUse, float _descProportion ) :
|
76 | trainObjClass(_trainObjClass), vocabSize(_vocabSize), memoryUse(_memoryUse), descProportion(_descProportion) {}
|
77 | void read( const FileNode& fn )
|
78 | {
|
79 | fn["trainObjClass"] >> trainObjClass;
|
80 | fn["vocabSize"] >> vocabSize;
|
81 | fn["memoryUse"] >> memoryUse;
|
82 | fn["descProportion"] >> descProportion;
|
83 | }
|
84 | void write( FileStorage& fs ) const
|
85 | {
|
86 | fs << "trainObjClass" << trainObjClass;
|
87 | fs << "vocabSize" << vocabSize;
|
88 | fs << "memoryUse" << memoryUse;
|
89 | fs << "descProportion" << descProportion;
|
90 | }
|
91 | void print() const
|
92 | {
|
93 | cout << "trainObjClass: " << trainObjClass << endl;
|
94 | cout << "vocabSize: " << vocabSize << endl;
|
95 | cout << "memoryUse: " << memoryUse << endl;
|
96 | cout << "descProportion: " << descProportion << endl;
|
97 | }
|
98 |
|
99 |
|
100 | string trainObjClass;
|
101 |
|
102 | int vocabSize;
|
103 | int memoryUse;
|
104 |
|
105 | float descProportion;
|
106 | };
|
107 |
|
108 | struct SVMTrainParamsExt
|
109 | {
|
110 | SVMTrainParamsExt() : descPercent(VISUAL_VOCABULARY_DESCRIPTORS_FROM_EACH_TRAINING_PROPORTION_IMAGE), targetRatio(VISUAL_VOCABULARY_TRAINING_SUCEESS_TARGET), balanceClasses(true) {}
|
111 | SVMTrainParamsExt( float _descPercent, float _targetRatio, bool _balanceClasses ) :
|
112 | descPercent(_descPercent), targetRatio(_targetRatio), balanceClasses(_balanceClasses) {}
|
113 | void read( const FileNode& fn )
|
114 | {
|
115 | fn["descPercent"] >> descPercent;
|
116 | fn["targetRatio"] >> targetRatio;
|
117 | fn["balanceClasses"] >> balanceClasses;
|
118 | }
|
119 | void write( FileStorage& fs ) const
|
120 | {
|
121 | fs << "descPercent" << descPercent;
|
122 | fs << "targetRatio" << targetRatio;
|
123 | fs << "balanceClasses" << balanceClasses;
|
124 | }
|
125 | void print() const
|
126 | {
|
127 | cout << "descPercent: " << descPercent << endl;
|
128 | cout << "targetRatio: " << targetRatio << endl;
|
129 | cout << "balanceClasses: " << balanceClasses << endl;
|
130 | }
|
131 |
|
132 | float descPercent;
|
133 | float targetRatio;
|
134 | bool balanceClasses;
|
135 | };
|
136 |
|
137 |
|
138 |
|
139 | void printUsedParams( const string& mediaPath, const string& resDir,
|
140 | const DDMParams& ddmParams, const VocabTrainParams& vocabTrainParams,
|
141 | const SVMTrainParamsExt& svmTrainParamsExt )
|
142 | {
|
143 | cout << "CURRENT SCANNER CONFIGURATION" << endl;
|
144 | cout << "----------------------------------------------------------------" << endl;
|
145 | cout << "mediaPath: " << mediaPath << endl;
|
146 | cout << "resDir: " << resDir << endl;
|
147 | cout << endl; ddmParams.print();
|
148 | cout << endl; vocabTrainParams.print();
|
149 | cout << endl; svmTrainParamsExt.print();
|
150 | cout << "----------------------------------------------------------------" << endl << endl;
|
151 | }
|
152 |
|
153 | bool readVocabulary( const string& filename, Mat& vocabulary )
|
154 | {
|
155 | #if defined(DEBUG_MODE)
|
156 | cout << "Reading vocabulary...";
|
157 | #endif
|
158 |
|
159 | FileStorage fs( filename, FileStorage::READ );
|
160 | if( fs.isOpened() )
|
161 | {
|
162 | fs["vocabulary"] >> vocabulary;
|
163 | return true;
|
164 | }
|
165 | return false;
|
166 | }
|
167 |
|
168 |
|
169 | bool writeBowImageDescriptor( const string& file, const Mat& bowImageDescriptor )
|
170 | {
|
171 | FileStorage fs( file, FileStorage::WRITE );
|
172 | if( fs.isOpened() )
|
173 | {
|
174 | fs << "imageDescriptor" << bowImageDescriptor;
|
175 | return true;
|
176 | }
|
177 | return false;
|
178 | }
|
179 |
|
180 |
|
181 |
|
182 |
|
183 |
|
184 |
|
185 | void loadListFromDir( string dir , vector<string>* m_object_classes)
|
186 | {
|
187 | string filepath;
|
188 | string filename;
|
189 | string filebasename;
|
190 | string fileext;
|
191 | int arrTemplatesCount;
|
192 | DIR *dp;
|
193 | struct dirent *dirp;
|
194 | struct stat filestat;
|
195 |
|
196 | arrTemplatesCount=0;
|
197 | dp = opendir( dir.c_str() );
|
198 | if (dp == NULL)
|
199 | {
|
200 | cout << "Error opening " << dir << endl;
|
201 | return;
|
202 | }
|
203 |
|
204 | while ((dirp = readdir( dp )) && (arrTemplatesCount < 100000))
|
205 | {
|
206 | filename=dirp->d_name;
|
207 | filepath = dir + "/" + filename;
|
208 |
|
209 |
|
210 | if (stat( filepath.c_str(), &filestat )) continue;
|
211 |
|
212 |
|
213 | if (S_ISREG( filestat.st_mode ))
|
214 | {
|
215 | fileext = filename.substr(filename.find_last_of(".") + 1);
|
216 | std::transform(fileext.begin(), fileext.end(),fileext.begin(), ::tolower);
|
217 |
|
218 | if(( fileext == "xml") || ( fileext == "xml.gz") || ( fileext == "gz"))
|
219 | {
|
220 | filebasename = filename.substr(0, filename.find_first_of(".") );
|
221 |
|
222 | #if defined(DEBUG_MODE)
|
223 | cout << "Loaded: " << filebasename << " " << filepath.c_str() << endl;
|
224 | #endif
|
225 |
|
226 | (*m_object_classes).push_back(filebasename);
|
227 |
|
228 | }
|
229 | }
|
230 |
|
231 | arrTemplatesCount++;
|
232 | }
|
233 |
|
234 | closedir( dp );
|
235 |
|
236 | }
|
237 |
|
238 |
|
239 |
|
240 |
|
241 |
|
242 |
|
243 | int main(int argc, char** argv)
|
244 | {
|
245 | if( argc != 3 && argc != 6 )
|
246 | {
|
247 | echo <<"\nbagofwords_scan </path/to/some/video/file.avi> </path/to/the/trained/BOW/VOCDATA/output> <SURF> <OpponentSURF> <BruteForce>" << endl;
|
248 | exit(-1);
|
249 | }
|
250 |
|
251 | CvMemStorage* storageTmp = cvCreateMemStorage(0);
|
252 | const string mediaPath = argv[1], resPath = argv[2];
|
253 |
|
254 |
|
255 | string vocName;
|
256 | DDMParams ddmParams;
|
257 | VocabTrainParams vocabTrainParams;
|
258 | SVMTrainParamsExt svmTrainParamsExt;
|
259 |
|
260 | FileStorage paramsFS( resPath + "/" + paramsFile, FileStorage::READ );
|
261 | if( paramsFS.isOpened() )
|
262 | {
|
263 | const FileNode& fn=paramsFS.root();
|
264 |
|
265 | fn["vocName"] >> vocName;
|
266 | FileNode currFn = fn;
|
267 |
|
268 | currFn = fn["ddmParams"];
|
269 | ddmParams.read( currFn );
|
270 |
|
271 | currFn = fn["vocabTrainParams"];
|
272 | vocabTrainParams.read( currFn );
|
273 |
|
274 | currFn = fn["svmTrainParamsExt"];
|
275 | svmTrainParamsExt.read( currFn );
|
276 |
|
277 | }else{
|
278 | cout << "\n Could open the file " << resPath << "/" << paramsFile << endl;
|
279 | exit(-1);
|
280 | }
|
281 |
|
282 |
|
283 | Ptr<FeatureDetector> featureDetector = FeatureDetector::create( ddmParams.detectorType );
|
284 | Ptr<DescriptorExtractor> descExtractor = DescriptorExtractor::create( ddmParams.descriptorType );
|
285 |
|
286 | cout << "\nHeisenbug: descExtractor " << descExtractor->descriptorType() << "=" << CV_32FC1 << " ?\n";
|
287 |
|
288 |
|
289 | Ptr<BOWImgDescriptorExtractor> bowExtractor;
|
290 | if( featureDetector.empty() || descExtractor.empty() )
|
291 | {
|
292 | cout << "featureDetector or descExtractor was not created" << endl;
|
293 | exit(-1);
|
294 | }else{
|
295 | Ptr<DescriptorMatcher> descMatcher = DescriptorMatcher::create( ddmParams.matcherType );
|
296 | if( featureDetector.empty() || descExtractor.empty() || descMatcher.empty() )
|
297 | {
|
298 | cout << "descMatcher was not created" << endl;
|
299 | exit(-1);
|
300 | }
|
301 | bowExtractor = new BOWImgDescriptorExtractor( descExtractor, descMatcher );
|
302 | }
|
303 |
|
304 |
|
305 |
|
306 |
|
307 | printUsedParams( mediaPath, resPath, ddmParams, vocabTrainParams, svmTrainParamsExt );
|
308 | cout << "\n Threshold for calculated " << MINIMUM_BOW_CONFIDENCE_SCORE << " class confidence...\n" << endl;
|
309 |
|
310 |
|
311 | Mat vocabulary;
|
312 | string vocabularyFilename = resPath + "/" + vocabularyFile;
|
313 | if( !readVocabulary( vocabularyFilename, vocabulary) )
|
314 | {
|
315 | cout << "\n Could not load vocabulary file! \n" << vocabularyFilename << endl;
|
316 | return -1;
|
317 | }
|
318 |
|
319 | bowExtractor->setVocabulary( vocabulary );
|
320 | #if defined(DEBUG_MODE)
|
321 | cout << "\nSet Vocabulary: rows=" << vocabulary.rows << " cols="<< vocabulary.cols << endl << endl;
|
322 | #endif
|
323 |
|
324 |
|
325 |
|
326 |
|
327 | vector<string> m_object_classes;
|
328 | string svmFileLocation = resPath + svmsDir ;
|
329 | loadListFromDir(svmFileLocation, &m_object_classes);
|
330 |
|
331 | std::vector<BogClassifierTracker> bogClasses;
|
332 |
|
333 |
|
334 |
|
335 | const vector<string>& objClasses=m_object_classes;
|
336 |
|
337 |
|
338 | #if defined(DEBUG_MODE)
|
339 | cout << "\n Loaded Vocabulary: bowExtractor->descriptorSize()=" << bowExtractor->descriptorSize() << endl;
|
340 | #endif
|
341 | CV_Assert( !bowExtractor->getVocabulary().empty() );
|
342 |
|
343 |
|
344 | cout << "Load SVM files for selected Visual Vocabulary:" << endl;
|
345 | for( size_t classIdx = 0; (classIdx < objClasses.size()); ++classIdx )
|
346 | {
|
347 |
|
348 |
|
349 | string svmFilename = resPath + svmsDir + "/" + objClasses[classIdx] + ".xml.gz";
|
350 |
|
351 | FileStorage fs( svmFilename, FileStorage::READ);
|
352 | if( fs.isOpened() )
|
353 | {
|
354 |
|
355 | BogClassifierTracker BOGCLassRecord = BogClassifierTracker(objClasses[classIdx], svmFilename);
|
356 | bogClasses.push_back(BOGCLassRecord);
|
357 |
|
358 | #if defined(DEBUG_MODE)
|
359 | cout << "*** LOADING SVM CLASSIFIER FOR CLASS " << bogClasses[classIdx].nameOfClass << " ***" << endl;
|
360 | cout << svmFilename << endl;
|
361 | #endif
|
362 |
|
363 | cout << bogClasses[classIdx].nameOfClass << " " << std::flush;
|
364 | fs.release();
|
365 | }
|
366 |
|
367 | }
|
368 | cout << "\n---------------------------------------------------------------" << endl;
|
369 |
|
370 |
|
371 |
|
372 |
|
373 | IplImage *imgBuffer, *img;
|
374 | CvCapture *capture=cvCreateFileCapture(mediaPath.c_str());
|
375 | int frameCounter = 0;
|
376 |
|
377 |
|
378 | cvGrabFrame(capture);
|
379 | imgBuffer = cvRetrieveFrame(capture);
|
380 | if( imgBuffer == 0 ) {
|
381 | fprintf( stderr, "Cannot load video target file %s!\n", mediaPath.c_str());
|
382 | exit(-1);
|
383 | }
|
384 | img = cvCreateImage(cvGetSize(imgBuffer), IPL_DEPTH_8U, 3);
|
385 |
|
386 |
|
387 | IplImage *imgBufferGray = cvCreateImage( cvGetSize(imgBuffer), IPL_DEPTH_8U, 1 );
|
388 |
|
389 |
|
390 |
|
391 |
|
392 |
|
393 | while(cvGrabFrame(capture))
|
394 | {
|
395 |
|
396 | imgBuffer = cvRetrieveFrame(capture);
|
397 |
|
398 |
|
399 |
|
400 | frameCounter++;
|
401 | cout << "\rFrame number " << frameCounter << " ";
|
402 |
|
403 | Mat imgMat = imgBuffer;
|
404 |
|
405 |
|
406 | size_t i = 0;
|
407 | vector<KeyPoint> keypoints;
|
408 | vector<Mat> bowImageDescriptors;
|
409 |
|
410 | #if defined(DEBUG_MODE)
|
411 | cout << "\nComputing descriptors for image... " ;
|
412 | #endif
|
413 | featureDetector->detect( imgMat, keypoints );
|
414 |
|
415 |
|
416 | #if defined(DEBUG_MODE)
|
417 | cout << "\nGenerating BoW vector... " << endl ;
|
418 | #endif
|
419 | bowImageDescriptors.resize( (i+1) );
|
420 | bowExtractor->compute( imgMat, keypoints, bowImageDescriptors[i] );
|
421 |
|
422 | float imageKeypointsSize = keypoints.size();
|
423 |
|
424 |
|
425 | if( bowImageDescriptors[i].empty() || (bowImageDescriptors[i].cols == 0) || (bowImageDescriptors[i].rows == 0) || (imageKeypointsSize < 1))
|
426 | {
|
427 | cout << "\n Error: bow image descriptor empty.\n" << endl;
|
428 |
|
429 | }else{
|
430 | #if defined(DEBUG_MODE)
|
431 | cout << "\nNote: bowImageDescriptors.size=" << bowImageDescriptors.size()
|
432 | << " col=" << bowImageDescriptors[i].cols
|
433 | << " row="<< bowImageDescriptors[i].rows << endl;
|
434 | #endif
|
435 |
|
436 |
|
437 | drawKeypoints(imgMat, keypoints, imgMat, Scalar(0,255,255));
|
438 |
|
439 |
|
440 | float signMul = -1.f;
|
441 | for( size_t imageIdx = 0; imageIdx < bogClasses.size(); imageIdx++ )
|
442 | {
|
443 |
|
444 |
|
445 | #if defined(DEBUG_MODE)
|
446 | cout << "\nFrame " << frameCounter
|
447 | << ": CALCULATING CONFIDENCE SCORE FOR CLASS " << bogClasses[imageIdx].nameOfClass << endl;
|
448 | #endif
|
449 |
|
450 | #if defined(DEBUG_MODE)
|
451 | float svmFeaturesUsed = (*bogClasses[imageIdx].svm).get_var_count();
|
452 | #endif
|
453 | float scoreVal = (*bogClasses[imageIdx].svm).predict( bowImageDescriptors[i], true );
|
454 | float classVal=0;
|
455 |
|
456 |
|
457 |
|
458 |
|
459 | {
|
460 |
|
461 | classVal = (*bogClasses[imageIdx].svm).predict(bowImageDescriptors[i], false );
|
462 |
|
463 | signMul = (classVal < 0) == (scoreVal < 0) ? 1.f : -1.f;
|
464 | }
|
465 |
|
466 |
|
467 | float confidence = signMul * scoreVal;
|
468 | #if defined(DEBUG_MODE)
|
469 | cout << "\nConfidence=" << confidence << endl;
|
470 | #endif
|
471 |
|
472 |
|
473 | #if defined(DEBUG_MODE)
|
474 | cout << "\n classVal=" << classVal << " scoreVal=" << scoreVal << endl;
|
475 | #endif
|
476 |
|
477 | #if defined(DEBUG_MODE)
|
478 | cout << "\n Keypoints=" << imageKeypointsSize << " Used Points=" << svmFeaturesUsed <<endl;
|
479 | #endif
|
480 |
|
481 | if( (confidence > MINIMUM_BOW_CONFIDENCE_SCORE) && (confidence < MAXIMUM_BOW_CONFIDENCE_SCORE))
|
482 | {
|
483 |
|
484 |
|
485 | int supportVectorCount = (*bogClasses[imageIdx].svm).get_support_vector_count();
|
486 |
|
487 | #if defined(DEBUG_MODE)
|
488 | cout << "\n support vector count: " << supportVectorCount << endl ;
|
489 | #endif
|
490 |
|
491 | #if defined(DEBUG_MODE)
|
492 | cout << "\n score: " << bogClasses[imageIdx].nameOfClass << " = " << confidence << " [ " << scoreVal << " ] ";
|
493 | #endif
|
494 |
|
495 | }else {
|
496 | #if defined(DEBUG_MODE)
|
497 | cout << "\n Skipped: " << bogClasses[imageIdx].nameOfClass << " = " << confidence << " [ " << scoreVal << " ] ";
|
498 | #endif
|
499 | }
|
500 | }
|
501 |
|
502 |
|
503 | #if defined(DEBUG_MODE)
|
504 | imshow("image_keypoints",imgMat);
|
505 | int sc = waitKey(1000);
|
506 | cout << "\n---------------------------------------------------------------" << endl;
|
507 | #else
|
508 | imshow("image_keypoints",imgMat);
|
509 | int sc = waitKey(0);
|
510 | #endif
|
511 |
|
512 |
|
513 | |
514 | if( !writeBowImageDescriptor( "example.jpg.xml.gz", bowImageDescriptors[i] ) )
|
515 | {
|
516 | cout << "Error: file example can not be opened to write bow image descriptor" << endl;
|
517 | exit(-1);
|
518 | }
|
519 | */
|
520 |
|
521 | }
|
522 |
|
523 | }
|
524 |
|
525 |
|
526 | cvReleaseCapture(&capture);
|
527 | return 0;
|
528 | }
|