1 | private class ConvexityDefect {
|
2 |
|
3 | private Point mStart;
|
4 | private Point mEnd;
|
5 | private Point mDepthPoint;
|
6 | private float mDepth;
|
7 |
|
8 | public Point getStart(){
|
9 | return mStart;
|
10 | }
|
11 |
|
12 | public Point getEnd(){
|
13 | return mEnd;
|
14 | }
|
15 |
|
16 | public Point getDepthPoint(){
|
17 | return mDepthPoint;
|
18 | }
|
19 |
|
20 | public float getDepth(){
|
21 | return mDepth;
|
22 | }
|
23 |
|
24 | public void setStart(Point start){
|
25 | this.mStart = start;
|
26 | }
|
27 |
|
28 | public void setEnd(Point end){
|
29 | this.mEnd = end;
|
30 | }
|
31 |
|
32 | public void setDepthPoint(Point DepthPoint){
|
33 | this.mDepthPoint = DepthPoint;
|
34 | }
|
35 |
|
36 | public void setDepth(float depth){
|
37 | this.mDepth = depth;
|
38 | }
|
39 |
|
40 | }
|
41 |
|
42 | public List<ConvexityDefect> findConvexityDefects(Mat contour, List<Point> hullPts){
|
43 |
|
44 | List<Point> contourPts = new ArrayList<Point>();
|
45 | List<ConvexityDefect> defects = new ArrayList<ConvexityDefect>();
|
46 |
|
47 | Converters.Mat_to_vector_Point(contour, contourPts);
|
48 |
|
49 | if(contourPts.size() < 4 || hullPts.size() < 3)
|
50 | {
|
51 | // Error: Contour size must be >= 4 and convex hull size must be >= 3
|
52 | return null;
|
53 | }
|
54 |
|
55 | // Co-Orientation of Contour and it's Hull
|
56 | int sign = 0;
|
57 | int index1, index2, index3;
|
58 | Point pos, hull_cur, contour_cur;
|
59 |
|
60 | pos = hullPts.get(0);
|
61 | index1 = contourPts.indexOf(pos);
|
62 |
|
63 | pos = hullPts.get(1);
|
64 | index2 = contourPts.indexOf(pos);
|
65 |
|
66 | pos = hullPts.get(2);
|
67 | index3 = contourPts.indexOf(pos);
|
68 |
|
69 | sign += (index2 > index1) ? 1 : 0;
|
70 | sign += (index3 > index2) ? 1 : 0;
|
71 | sign += (index1 > index3) ? 1 : 0;
|
72 |
|
73 | if(sign == 1) // 0: same orientation 1: reverse orientation
|
74 | Collections.reverse(hullPts);
|
75 |
|
76 | // Cycle through the contour and hull
|
77 | for( int i = 0; i < hullPts.size(); i++ )
|
78 | {
|
79 | double dx0, dy0;
|
80 | double depth = 0, scale;
|
81 | boolean is_defect = false;
|
82 | Point hull_next;
|
83 | ConvexityDefect defect = new ConvexityDefect();
|
84 |
|
85 | hull_cur = hullPts.get(i);
|
86 |
|
87 | if(i + 1 == hullPts.size()) // Caculate the defect between the last hull point and the first
|
88 | hull_next = hullPts.get(0); // First point of the hull
|
89 | else
|
90 | hull_next = hullPts.get(i+1);
|
91 |
|
92 | dx0 = hull_next.x - hull_cur.x;
|
93 | dy0 = hull_next.y - hull_cur.y;
|
94 | assert( dx0 != 0 || dy0 != 0 );
|
95 | scale = 1/Math.sqrt(dx0*dx0 + dy0*dy0);
|
96 |
|
97 | defect.setStart(hull_cur);
|
98 | defect.setEnd(hull_next);
|
99 |
|
100 | // Cycle through the contour till next hull point
|
101 | for( int k = contourPts.indexOf(hullPts.get(i)); k < contourPts.size() ; k++ )
|
102 | {
|
103 |
|
104 | contour_cur = contourPts.get(k); // Next contour point between the 2 hull points
|
105 |
|
106 | if(contour_cur.equals(hull_next)) // If we have reached the second hull point, stop cycling through the contour
|
107 | break;
|
108 | else
|
109 | {
|
110 | if(k + 1 == contourPts.size()) // If the contour reached the end, start from the first point
|
111 | {
|
112 | k = 0; // Reset the index to the first point of the contour
|
113 | contour_cur = contourPts.get(k); // Next contour point between the 2 hull points
|
114 |
|
115 | if(contour_cur.equals(hull_next))
|
116 | break;
|
117 | }
|
118 |
|
119 | // Compute distance from current point to the hull edge
|
120 | double dx = contour_cur.x - hull_cur.x;
|
121 | double dy = contour_cur.y - hull_cur.y;
|
122 |
|
123 | // Compute depth
|
124 | double dist = Math.abs(-dy0*dx + dx0*dy) * scale;
|
125 |
|
126 | if( dist > depth )
|
127 | {
|
128 | depth = dist;
|
129 | defect.setDepthPoint(contour_cur);
|
130 | defect.setDepth((float)depth);
|
131 | is_defect = true;
|
132 | }
|
133 | }
|
134 | }
|
135 |
|
136 | if(is_defect)
|
137 | {
|
138 | defects.add(defect);
|
139 | is_defect = false;
|
140 | }
|
141 | }
|
142 |
|
143 | return defects;
|
144 | } |