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Abstract. An algorithm to detect depth discontinuities from a stereo pair of images is presented. The algorithm
matches individual pixels in corresponding scanline pairs, while allowing occluded pixels to remain unmatched,
then propagates the information between scanlines by means of a fast postprocessor. The algorithm handles large
untextured regions, uses a measure of pixel dissimilarity that is insensitive to image sampling, and prunes bad
search nodes to increase the speed of dynamic programming. The computation is relatively fast, taking about
600 nanoseconds per pixel per disparity on a personal computer. Approximate disparity maps and precise depth
discontinuities (along both horizontal and vertical boundaries) are shown for several stereo image pairs containing
textured, untextured, fronto-parallel, and slanted objects in indoor and outdoor scenes.
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1. Introduction

Cartoon artists have known the perceptual importance
of depth discontinuities for a long time. To create the
illusion of depth, they paint characters and background
on different layers of acetate, being careful to ensure
a crisp delineation of foreground objects. Similarly, in
human stereo vision, depth discontinuities are vividly
perceived and help to carve out distinct objects as well
as to elucidate the distance relations between them.
Depth discontinuities play a fundamental role in im-

age understanding, as acknowledged by the insightful
“layers” representation of image sequences (Wang and
Adelson, 1994). For data-reduction, depth disconti-
nuities are similar to intensity edges in preserving the
“interesting” aspects of an image with much less data
(Attneave, 1954; Malik and Perona, 1990), and they
serve a purpose similar to segmentation because they
tend to carve out the distinct objects in a scene (Chen
and Lin, 1997; Gamble, 1989; Little and Gillett, 1990;
Poggio et al., 1988). Depth discontinuities are more
powerful than intensity edges, however, because they

truly tend to outline the contours of objects rather than
changes in pigmentation or illumination, and unlike the
elusive problem of segmentation, depth discontinuities
are well-defined.
In this paper we present amethod for detecting depth

discontinuities from a stereo pair of images that first
computes a dense disparity map and then labels those
points that exhibit a significant change in disparity. (A
threshold is unfortunately inherent in any problem of
estimating discontinuities from a discrete function.)
Many traditional stereo algorithms, such as those

based on correlation windows, tend to blur depth dis-
continuities. Our algorithm, on the other hand, uses
neither windows nor preprocessing of the intensities,
and matches the individual pixels in one image with
those in the other image. As a result, we preserve
sharp changes in disparity while introducing few false
discontinuities, with far less computation than would
be required if disparities were computed to subpixel
resolution (which of course would be necessary
for the more common goal of accurate scene reconstr-
uction). Thus, by sacrificing accurate disparities our
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algorithm is able to quickly compute crisp and accurate
discontinuities.
Like several previous algorithms (Belhumeur and

Mumford, 1992; Cox et al., 1996; Geiger et al., 1995;
Intille and Bobick, 1994), our approach first matches
different epipolar scanline pairs independently, and de-
tects occlusions simultaneously with a disparity map,
using a form of dynamic programming. Then, a post-
processor propagates information between the scan-
lines to refine the disparity map, from which the depth
discontinuities are detected.
Our approach contains four novelties: (1) a method

for handling large untextured regions which present
a challenge to many existing stereo algorithms; (2) a
measure of pixel dissimilarity that overcomes the image
sampling problem; (3) a technique to reduce dramat-
ically the running time of dynamic programming by
pruning unlikely search nodes; and (4) a postprocessor
that quickly propagates disparities between scanlines
to produce a cleaner disparitymap. The combination of
avoiding subpixel resolution, pruning bad nodes, and
fast postprocessing results in an efficient algorithm that
takes 600 nanoseconds per pixel per disparity on a per-
sonal computer, making it a candidate for real-time
implementation. We demonstrate the algorithm’s per-
formance in a wide range of scenarios: indoor and out-
door scenes, textured and untextured objects, textured
and untextured backgrounds, curved and planar sur-
faces, specular and matte surfaces, and fronto-parallel
and slanted surfaces.
The paper is organized as follows. After briefly

reviewing closely related work in Section 3, we de-
scribe our algorithm for matching two scanlines inde-
pendently in Section 3. The following three sections
then explain in more detail the three novelties of the
matching process: a method for handling untextured
regions, a pixel dissimilarity measure that is insensi-
tive to sampling, and a pruning strategy for improving
the speed over standard dynamic programming. The
discussion of our algorithm ends in Section 7 with a
presentation of the postprocessor. Sections 8 and9 con-
tain, respectively, experimental results on several pairs
of images and a thorough demonstration of the impor-
tance of our dissimilarity measure. The final section
contains some of our conclusions.

2. Previous Work

Some researchers have explored the possibility of
detecting depth discontinuities from stereo images
directly, bypurely localmeans.Little andGillett (1990)

propose two algorithms, the first of whichmatches pix-
els in the two images while keeping track of the pixels
that lie in the forbidden zone1 of at least one match,
for all possible disparities. From these pixels, which
are basically the occluded pixels, the depth discontinu-
ities are inferred. In the second algorithm, a search is
conducted for each pixel in one image to find a corre-
spondingmatch in the other image, and a depth discon-
tinuity is declared if there is more than one goodmatch.
This second approach is similar to the mixture-motion
methods aimed at detecting motion discontinuities by
identifying small regions that contain more than a sin-
gle motion (Black and Anandan, 1990; Spoerri and
Ullman, 1987).
Toh and Forrest (1990) describe a local method in

which the stereo cameras are assumed to be fixated on
an intensity edge roughly perpendicular to the baseline:
A depth discontinuity is declared if either the left or the
right sides of the boundary do not match. This work
was extended by Wixson (1993), whose algorithm de-
tects and links near-vertical edges in untextured im-
ages, then matches the edges from the two images.
Once correspondence is established, the left and right
regions of the edges are examined, and if one of them
does not match well, then a depth discontinuity is de-
clared. Since the region size depends on the amount
of texture in the region, Wixson’s extension is more
global than the other methods.
There are two main limitations with these tech-

niques. First, the localmethods require texture through-
out the images because depth discontinuities cannot be
detected locally in the absence of texture. Secondly, the
identification of occlusions with depth discontinuities
is not correct. Algorithms which make this connection
are not able to detect depth discontinuities that lie along
boundaries parallel to the baseline, because these dis-
continuities do not give rise to occlusion. Horizontal
boundaries abound in man-made scenes and cannot be
ignored.
Asmentioned before, another promising approach is

to first compute a dense disparity map, and then to de-
tect the sharp changes in disparity. With the exception
of the cooperative algorithmofMarr and Poggio (1976)
which was tested only on random-dot stereograms,
early stereo algorithms (Baker andBinford, 1981; Ohta
and Kanade, 1985; Grimson, 1985) tended to smooth
the disparities across the depth discontinuities, mainly
due to their reliance upon simple interpolation schemes
that did not allow for sharp changes in disparity. Un-
fortunately, the popular technique of window-based
correlation has the same problem, and the solution of
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iteratively reducing the window size based on the
amount of disparity variation within the window is
computationally expensive (Jones and Malik, 1992;
Kanade and Okutomi, 1994).
More recent stereo algorithms incorporate the phe-

nomena of occlusions and depth discontinuities at an
early stage and are therefore capable, with varying de-
grees of success, of preserving sharp changes in dispar-
ity (Belhumeur and Mumford, 1992; Cox et al., 1996;
Fua, 1991; Geiger et al., 1995; Intille and Bobick,
1994; Jones and Malik, 1992; Luo and Burkhardt,
1995). Our approach builds on this line of work,
resulting in crisper, more accurate depth discontinu-
ities on a wider range of images, and with much less
computation.

3. Matching Scanlines

We pose the stereo correspondence problem as the
problem of matching pixels in one scanline to pixels
in the corresponding scanline in the other image, as-
suming that the two cameras are rectified.2 We have
found that pixel resolution is sufficient to compute a
rough disparity map and to detect the most prominent
depth discontinuities.
Correspondence is encoded in a match sequence.

Each match is an ordered pair (x, y) of pixels signi-
fying that the intensities IL(x) and IR(y) are images
of the same scene point. (Throughout this paper, x
denotes a pixel in the left scanline while y denotes
a pixel in the right scanline.) Unmatched pixels are oc-
cluded, and a subsequence of adjacent occluded pixels
that is bordered by two non-occluded pixels (or by a
non-occluded pixel and the image boundary) is called
an occlusion. (Our occlusions roughly correspond to
the half-occluded regions of Belhumeur and Mumford
(1992).) An example of a match sequence on an ex-
tremely short scanline is shown in Fig. 1.
The disparity δ(x) of a pixel x in the left scanline

that matches some pixel y in the right scanline is de-
fined in the usual way as x − y, while the disparities of
all the pixels in an occlusion are assigned the disparity

Figure 1. Thematch sequenceM = 〈(1,0), (2,1), (6,2), (7,3), (8,4),
(9,5), (10,6), (11,9), (12,10)〉. The five middle matches correspond
to a near object.

of the farther of the two neighboring matches. The
depth-discontinuity pixels are considered for now to
be those pixels that border a change of at least one
disparity level and lie on the far object. For postpro-
cessing in Section 7 and for displaying the final results
in Section 8, we use a threshold of two disparity levels,
which enables the algorithm to handle slanted objects
without explicitly detecting the slant.

3.1. Cost Function

With eachmatch sequenceM we associate a cost γ (M)

that measures how unlikely it is that M describes the
true correspondence. (That is, the best match sequence
has the lowest cost.) Instead of deriving a maximum
a posteriori or maximum likelihood cost function from
a Bayesian formulation (Belhumeur and Mumford,
1992; Cox et al., 1996; Geiger et al., 1995; Luo and
Burkhardt, 1995), we propose a simple cost function
which is based mainly on intuition and justified solely
by empirical evidence.
The cost of amatch sequence is defined by a constant

penalty for each occlusion, a constant reward for each
match, and a sum of the dissimilarities between the
matched pixels:

γ (M) = Noccκocc − Nmκr +
Nm∑

i=1
d(xi , yi ), (1)

where κocc is the constant occlusion penalty, κr is the
constant match reward, d(xi , yi ) is the dissimilarity be-
tween pixels xi and yi , and Nocc and Nm are the number
of occlusions (not the number of occluded pixels) and
matches, respectively, in M .
Because each change in disparity incurs an occlusion

penalty, this cost function prefers piecewise-constant
disparity maps. Thus, if possible, each object is as-
signed a single disparity, even if that object’s depth
actually varies (as in the case of a cylindrical surface).
Although this behavior sacrifices accurate scene recon-
struction, it facilitates the precise localization of depth
discontinuities because it accentuates the change in dis-
parity at the boundaries of those objects, like cylinders,
whose disparity tapers at the ends. In addition, the sim-
plicity of Eq. (1) makes our cost function easy to un-
derstand, implement, and evaluate.

3.1.1. Occlusion Penalty and Match Reward. Intu-
itively, κocc is interpreted as the amount of evidence (in
terms of mismatched pixel intensities) that is neces-
sary in order to declare a change in disparity, while κr
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is interpreted as the maximum amount of pixel dissim-
ilarity that is generally expected between two match-
ing pixels. Together, the two terms function identically
to an occlusion penalty that is linearly dependent on
the length of the occlusion (Belhumeur and Mumford,
1992; Geiger et al., 1995). More precisely, let li be the
length (in terms of the number of pixels) of occlusion
i . Then

min γ (M) = min

{
Nocc∑

i=1
(κocc + κrli ) +

Nm∑

i=1
d(xi , yi )

}

,

which is easily shown by noting that the number of
matched pixels plus the number of occluded pixels
equals the total number n of pixels in the scanline, i.e.,

Nm +
Nocc∑

i=1
li = n.

We choose the former formulation because a constant
occlusion penalty is essential to our method of pruning
the search space, as described in Section 6.

3.1.2. Pixel Dissimilarity. For nowwe define the dis-
similarity simply as the absolute difference of intensity
between the two pixels:

d(xi , yi ) = |IL(xi ) − IR(yi )|. (2)

Because this definition is adversely affected by im-
age sampling, as we will see in Section 5, we will
later replace it with a more sophisticated measure of
dissimilarity.

3.2. Hard Constraints

In addition to measuring the likelihood of a match se-
quence by its cost, we impose hard constraints upon
each match sequence. These constraints serve two
purposes: (1) they facilitate a systematic search of the
space of possible match sequences, and (2) they dis-
allow certain types of unlikely match sequences. The
first five constraints are as follows:

C1. 0 ≤ xi − yi ≤ $, i = 1, . . . , Nm
C2. y1 = 0
C3. xNm = n − 1
C4. xi < x j , and

yi < y j , 1 ≤ i < j ≤ Nm
C5. xi+1 = xi + 1, or

yi+1 = yi + 1, i = 1, . . . , Nm − 1

To greatly reduce the size of the search space, C1
introduces $ as the maximum allowed disparity and
requires the disparities to be nonnegative because the
cameras are rectified. The following two constraints
force the left-most pixel in the right scanline and the
right-most pixel in the left scanline (n is the number of
pixels in the scanline) to be matched to some pixel in
the other scanline—notice that we do not specifywhich
pixels they must match, as some other algorithms do.
C4 is a combination of the uniqueness and ordering
constraints (Belhumeur andMumford, 1992; Faugeras,
1993), introduced to simplify dynamic programming,
and C5 precludes simultaneous occlusions in the two
images.3
In the next section we will add two additional con-

straints that allow the algorithm to handle untextured
regions. Two stereo pairs, the left images of which are
shown in Fig. 2, are used as running examples in the
next few sections. As more constraints and processing

Figure 2. The lamp image and the Clorox image.
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are introduced, the quality of the resulting depth maps
is shown to improve.

4. Handling Untextured Regions

Because of the ambiguity inherent in untextured re-
gions, many stereo algorithms require texture through-
out the images. In the literature, scenes are often altered
artificially by placing a textured background behind
the objects of interest in order to make the scene
more amenable to the stereo algorithm being tested.
As we will demonstrate, however, untextured regions
that are approximately fronto-parallel can be handled
quite nicely as long as one assumption remains true,
namely that intensity variation accompanies depth dis-
continuities.
Figures 3–5 show the depth maps for the two stereo

pairs in Fig. 2 obtained by adding different constraints
on the allowed location of depth discontinuities. In

Figure 3. The disparity maps obtained without the intensity-
variation constraints (and without our dissimilarity measure).

Figure 4. The disparity maps obtained with naive intensity-
variation constraints (but without our dissimilarity measure).

Fig. 3, no constraint is added to constraints C1–C5
discussed in Section 3.2. Since there is no texture in
the background, noise determines the location of depth
discontinuities.
Figure 4 includes the constraint that no disparity

edge can be placed where the derivative of image in-
tensity in the x direction is below a rather low thresh-
old. This threshold was kept fixed at 3 gray levels
per pixel in all our experiments. Image locations with
intensity changes above this threshold are declared to
contain intensity variations. These are not edges, both
because of the very modest value of the threshold and
because edges are usually local maxima of intensity
variation. Thus, the constraint used in Fig. 4 does not
force depth discontinuities to lie along intensity edges
(as done for instance in (Cochran and Medioni, 1992;
Fua, 1991; Gamble, 1987)), but merely prevents the
algorithm from placing them where any localization
decision would inevitably be based on noise.
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Figure 5. The disparity maps obtained with constraints C6 and C7
(but without our dissimilarity measure).

Figure 5 further refines the intensity variation con-
straint by reasoning on which side of the intensity vari-
ation the depth discontinuity must lie. Specifically, it
includes the following two constraints:

C6. If 〈xi , . . . , x j 〉 is an occlusion in the left scanline,
then x j lies to the left of intensity variation, 1 ≤
i ≤ j < Nm

C7. If 〈yi , . . . , y j 〉 is an occlusion in the right scanline,
then yi lies to the right of intensity variation,
1 < i ≤ j ≤ Nm.

To see the justification for these newconstraints, note
that intensity variation occuring at a depth discontinuity
(as the result of an intensity difference between the
near object and the far object) has the same disparity
as the near object (see Fig. 6). This arises because the

Figure 6. Given the assumption that there is a change in inten-
sity along the boundary between the near and far objects, intensity
variation must lie to the right of an occlusion in the left scanline.
(a) A physical setup; (b) The resulting intensity functions, with the
only matches evident from the data—the other matches must be hy-
pothesized; (c) A match sequence that appears feasible but actually
violates the assumption; (d) The match sequence that is consistent
with the assumption.

physical origin of the intensity variation is the boundary
of the near object, regardless of the geometry of the far
object. Therefore, as the camera moves laterally, the
intensity variationmoveswith the projection of the near
object.
Using Fig. 6 as an example, we notice that pixels

in the left scanline are occluded when the far object’s
projection is to the left of the near object’s. Since
the occluded pixels come from the far object, and
since the intensity variation is part of the near object,
the occlusion must lie immediately to the left of the in-
tensity variation. Likewise, occluded pixels in the right
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scanline must lie immediately to the right of an inten-
sity variation.
Adding these constraints to the algorithm yields the

results in Fig. 5. The errors on the left edge of the
table support have been fixed, as well as the region
between the wine and Clorox bottles. The improve-
ment from Fig. 4 to Fig. 5 is modest. However, this
is mainly because dynamic programming, together
with the other constraints, already does a relatively
good job, considering that scanlines are processed in-
dividually so far. Different underlying algorithms can
perform very differently with andwithout the consider-
ations on the sidedness of depth discontinuities. As an
illustration, Fig. 7 shows the results of a contrived al-
gorithm in which constraints C1–C5 and the intensity
variation constraint are satisfied, but not the “sided”
version C6, C7. Specifically, the constraints used for

Figure 7. Hypothetical disparitymaps that satisfy a naive intensity-
variation constraint.

Figs. 4 and 7 are exactly the same, except that for Fig. 7
constraints C6 and C7 are reversed to force the wrong
sidedness.
In summary, comparison of Figs. 3 and 4 shows that

the intensity variation constraint is crucial. Compari-
son of Figs. 7 and 5 shows that in principle sidedness
can be very important as well, while comparison of
Figs. 4 and 5 shows that, given our other constraints
and the dynamic programming method we use, sided-
ness is moderately useful.

5. The Problem of Sampling

The term d(xi , yi ) measures how unlikely it is that
IL(xi ) and IR(yi ) are images of the same scene point.
For the experiments of the previous section, d(xi , yi )
was simply the absolute difference between the two
intensities (Eq. (2)). However, this measure is inade-
quate for discrete images, because image sampling can
cause this difference to be large wherever the intensity
is changing rapidly and the disparity is not an integral
number of pixels. For example, the dark splotches in
Fig. 5 arise because the repetitive texture of the letter-
ing on the Clorox bottles is locally ambiguous, and the
false disparity is closer to an integral number of pix-
els than is the true disparity. Typically, the sampling
problem is alleviated by working at subpixel resolution
(Belhumeur and Mumford, 1992; Luo and Burkhardt,
1995), but this solution is computationally expensive
for algorithms that explicitly search over all possi-
ble disparities. Therefore, we propose instead to use
the linearly interpolated intensity functions surround-
ing two pixels to measure their dissimilarity, in a
method that is provably insensitive to sampling. This
technique increases the computing time by only about
10%, as opposed to subpixel resolution which can in-
crease the time by as much as 1100% (Birchfield and
Tomasi, 1998b).
To understand our dissimilarity measure in more de-

tail, consult Fig. 8, which shows the intensity functions
IL and IR incident upon two corresponding scanlines
of the left and right cameras, respectively. The func-
tions are sampled at discrete points by the image sensor;
three such adjacent points (or pixels) are shown here
in each scanline. In this discussion, xi and yi are the
pixels whose dissimilarity is to be measured. We de-
fine ÎR as the linearly interpolated function between
the sample points of the right scanline. Then we try to
measure how well the intensity at xi fits into the lin-
early interpolated region surrounding yi . That is, we
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Figure 8. Definition and computation of d̄(xi , yi , IL, IR).

define the following quantity:

d̄(xi , yi , IL, IR) = min
yi− 1

2≤y≤yi+
1
2

|IL(xi ) − ÎR(y)|.

Then, the dissimilarity between the pixels is computed
as the minimum of this quantity and its symmetric
counterpart:

d(xi , yi ) = min{d̄(xi , yi , IL, IR), d̄(yi , xi , IR, IL)}.

Thus, the definition of d is symmetrical.
Since the extreme points of a piecewise linear func-

tion must be its breakpoints, the computation of d is
rather straightforward. Again, see Fig. 8. First we com-
pute I−

R ≡ ÎR(yi − 1
2 ) = 1

2 (IR(yi ) + IR(yi − 1)),
the linearly interpolated intensity halfway between yi
and its neighboring pixel to the left, and the analogous
quantity I+

R ≡ ÎR(yi + 1
2 ) = 1

2 (IR(yi ) + IR(yi + 1)).
Then we let Imin = min(I−

R , I+
R , IR(yi )) and Imax =

max(I−
R , I+

R , IR(yi )). With these quantities defined,

d̄(xi , yi , IL, IR) = max{0, IL(xi )− Imax, Imin− IL(xi )}.

This computation takes only a small, constant amount
of time more than the absolute difference in intensities.

The quantity d is insensitive to sampling in the sense
that, without noise or other distortions, d(xi , yi ) = 0
whenever yi is the closest sampling point to the y value
corresponding to xi . The only restriction is that the
continuous intensity function incident upon the sen-
sor be either concave or convex in the vicinity of xi
and yi . In practice, inflection points cause no problem
since the regions surrounding them are approximately
linear—and linear functions are both concave and con-
vex. Therefore, our cost function works well as long
as the intensity function varies slowly compared to the
pixel spacing on the sensor, i.e., as long as aliasing does
not occur (see Birchfield and Tomasi, 1996, 1998b, for
details). We slightly defocus the lens to ensure this
condition.
Figure 9 contrasts our dissimilarity measure with

the absolute difference in intensity, on portions of two

Figure9. Top: Aportionof amatch sequence. For viewing clarity,
the left scanline is shifted up, and the right scanline is shifted to the
right. Middle: The dissimilarities between the matched pixels, as
computed by our measure (Most of the values are zero). Bottom:
The dissimilarities computed by taking the absolute value of the
difference in intensity.
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Figure 10. The disparitymaps obtainedwith our dissimilaritymea-
sure (and with the constraints C6 and C7).

real scanlines.Wherever the intensity function is nearly
constant, or wherever the disparity between the two
scanlines is close to an integral number of pixels, the
two approaches yield similar results, since sampling
effects are negligible. In the remaining areas, however,
the absolute difference can be large, while our measure
remains well-behaved.
The disparity maps obtained by using our dissimi-

larity measure are shown in Fig. 10. Notice that the
dark splotches have disappeared. Although these dis-
parity maps are greatly improved, the streaks and the
concavity of the lamp highlight an additional difficulty
caused by untextured regions: disparity may not be
discernible from a single scanline. Our postprocessing
method described in Section 7 has been designed to
solve this problem.

6. The Matching Algorithm

Thanks to the structure of the cost function in Eq. (1),
the technique of dynamic programming (also used in
(Baker and Binford, 1981; Belhumeur and Mumford,
1992; Cox et al., 1996; Geiger et al., 1995; Intille and
Bobick, 1994; Ohta and Kanade, 1985)) can be used to
find the optimal match sequence.
Figure 11(a) illustrates the search grid for two scan-

lines having 10 pixels each, using amaximumdisparity
of three pixels (i.e., $ = 3). Cell (x, y) represents a
possible match between pixel x in the left image and
pixel y in the right image. Because of the disparity
limit, many of the cells in the grid are disallowed; these
are shown as black cells. Our algorithm searches for
the best possible path4 stretching from the first col-
umn to the last row. As an example, the match seque-
nce 〈(1, 0), (2, 1), (3, 2), (5, 3), (6, 4), (7, 5), (8, 7),
(9, 8)〉 is shown by the cells marked with ×. Any col-
umn or row that does not contain an × corresponds to
an occluded pixel.
For any match (xi , yi ), the matches which can pos-

sibly be chosen as its immediately preceding match
(xi−1, yi−1) are the cells shown in Fig. 11(b), due to
constraints C4 and C5. Similarly, the matches which
can possibly be chosen as its immediately following
match (xi+1, yi+1) are the cells shown in Fig. 11(c).
Placing Figs. 11(b) and (c) onto the grid of Fig. 11(a)
reveals that each match has $ + 1 possible candidates
as its immediately preceding match and$+1 possible
candidates as its immediately following match (unless
it is near one of the image boundaries). (Recall that $
is the maximum disparity, from Constraint C1.)
In order tomake the diagram in Fig. 11(a)more com-

pact, we shift each column up by an amount equal to
the number of the column, which leads to the grid in
Fig. 12(a). The vertical axis is now δ = x − y, the dis-
parity. In a similar manner, Figs. 11(b) and (c) become
Figs. 12(b) and (c). For each cell of the shifted search
grid, we record two pieces of information: ϕ[δ, y] is
the cost of the best match sequence (so far) ending at
match (y+δ, y), and π [δ, y] points to the immediately
preceding match in that match sequence.

6.1. Two Dual Optimal Algorithms

Because of the duality between a match’s preceding
matches and its following matches, there are two dual
algorithms for searching this space. The first algorithm
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Figure 11. (a) The search grid and a match sequence (“×” cells);
(b) The matches (white cells) that can immediately precede a match
(striped cell); (c) The matches that can immediately follow a match.

is more intuitive and straightforward, but the second
oneprovides uswith a framework to speed the searchby
pruning bad cells, as wewill see in Section 6.2. Letting
γ0(x, y) refer to the cost of the best match sequence
whose ending match is (x, y), both algorithms traverse
the ϕ array from left to right, and from top to bottom,
computing the cost of the best path to each cell:

ϕ[δ, y] = γ0(y + δ, y)

= d(y + δ, y) − κr

Figure 12. (a) The shifted search grid; (b) The immediately pre-
ceding matches (ignoring disparity bounds); (c) The immediately
following matches.

+ min






ϕ[δ, y − 1],
ϕ[δ − 1, y − 1]+ κocc, . . . ,

ϕ[0, y − 1]+ κocc,

ϕ[δ + 1, y − 2]+ κocc, . . . ,

ϕ[$, y + δ − $ − 1]+ κocc






,

(3)

where the minimum is taken over the costs of the
best paths to the possible preceding matches of (y +
δ, y): first the match preceding no occlusion, then the
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matches preceding left occlusions, then the matches
preceding right occlusions. Once the ϕ array is filled,
the lowest-cost cell which satisfies constraint C3 is se-
lected as the ending match. Then, starting at this cell,
π is traced to find the optimal match sequence. Pseu-
docode for all three algorithms can be found in the
appendix.
The Backward-Looking Algorithm iterates through

all the cells [δ, y] of the shifted search grid, computing
Eq. (3) for each cell. When a cell is encountered, all of
its possible preceding matches [δp, yp] are checked to
determine which one lies on the best path to the cell.
The algorithm gets its name from the fact that it looks
backward to the preceding matches.
The Forward-Looking Algorithm splits the mini-

mization of Eq. (3) so that ϕ[δ, y] is computed se-
quentially as follows: the minimum of the first two
arguments, then the minimum of its current value and
the third argument, then the minimum of its current
value and the fourth argument, and so on. It iterates
through the cells [δp, yp] of the search grid, determin-
ing for each cell whether that cell lies on the best path to
one of its possible following matches [δ, y]. The path
to the cell itself is not updated, since its best path has
already been computed; rather, the paths to its possi-
ble following matches are updated. Therefore, it takes
$ + 1 iterations (because each match has this number
of possible preceding matches) before ϕ[δ, y] is equal
to γ0(y + δ, y). The algorithm gets its name from the
fact that it looks forward to the following matches.
These two algorithms perform identical computa-

tions, and the running time of each is O(n$2). Since
the Backward-Looking Algorithm is slightly more in-
tuitive, the advantage of the Forward-Looking Algo-
rithm may not be obvious at first glance. The answer
lies in the fact that, when a cell is encountered by the
Forward-Looking Algorithm, the cost of its best path
has already been computed. Therefore, we can deter-
mine before the cell is expanded whether or not it is
likely to lie on the optimal path. By performing this
test we can prune those cells with high costs, resulting
in an algorithm with a greatly reduced running time.
The justification and details of pruning are the subject
of the next section.

6.2. A Faster Algorithm

In the interest of optimality, both of these algorithms
perform a great deal of unnecessary computation be-
cause they compute the best paths to all the cells, even

Figure 13. Optimality is retained when p is not rightward ex-
panded, assuming that γ0(q) < γ0(p).

to bad ones. The Forward-Looking Algorithm pro-
vides a framework within which we can prune these
bad cells to produce an algorithm with a greatly re-
duced running time. Although optimality is sacrificed
in theory, the results of the algorithms are nearly iden-
tical in practice.5 Consider a match p with a possible
following match c such that there is a right occlusion
between them, as shown in Fig. 13 with respect to the
original search grid of Fig. 11. Now suppose that there
is some match q to the left of and on the same row as p
whose best path has a lower cost, i.e., γ0(q) < γ0(p).
Then q is also a possible preceding match of c (as is
evident from Fig. 11(c)), and the best path to c through
q is better than the best path to c through p, since the
occlusion penalty is constant. Therefore, there is no
need for the Forward-Looking Algorithm to expand p
to c, or indeed to any of the matches on c’s row since q
is also a possible preceding match of each of them. By
a similar argument, we conclude that it is fruitless to
expand p to any of the matches on its adjacent column
if there is a lower-cost match above it.
In light of these observations we could, without sac-

rificing optimality, modify the Forward-LookingAlgo-
rithm so that it refuses to expand rightward any match
with a lower-cost match to its left and refuses to expand
downward any match with a lower-cost match above it.
However, the running time would not be reduced, be-
cause determining whether there is a lower-cost match
above or to the left of another match is a complex com-
putation. Instead, we modify the algorithm so that it
refuses to expand rightward any match with a lower-
cost match in its row and refuses to expand downward
any match with a lower-cost match in its column. We
call the resulting algorithm the Faster Algorithm.
To see that optimality is lost, consider the situation

shown in Fig. 14, in which a match p has a possible
following match c such that there is a right occlusion
between them, as we had before. Now suppose there
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Figure 14. Optimality is lost when p is not rightward expanded,
assuming that γ0(r) < γ0(p).

is a match r on the same row as p which has a lower-
cost best path, i.e., γ0(r) < γ0(p). Also suppose that,
by the time p is encountered, the best path to r is better
than the best path to p, i.e., ϕ[r ] < ϕ[p].6 (Recall
that ϕ[p] is guaranteed to be equal to γ0(p) when p
is encountered, while ϕ[r ] will probably not be equal
to γ0(r).) Then the Faster Algorithm will refuse to
expand p rightward, since there is a lower-cost cell on
its row. Yet if there is no match to the left of p, or
even to the left of c, whose best path has a lower cost
than that of p, then the best path to c might very well
pass through p. Therefore, optimality is lost, although
it is not surprising that the loss is small, given the large
number of assumptions that have to be made.
The average running time of the Faster Algorithm is

estimated empirically to be O(n$ log $), as shown in
Fig. 15. (Recall that n is the number of pixels in the
scanline.)

Figure 15. Computing time vs. $ of the two algorithms on 630×
480 images, using a 333 MHz Pentium II microprocessor.

7. Propagating Information Between Scanlines

For natural scenes, disparities in adjacent scanlines
are not independent from each other. While processing
scanlines independently is computationally attractive,
it does not take full advantage of all the information
in the images. Therefore, to produce a disparity map
that is closer to the true solution, we seek a way to
incorporate this information.
Although a few algorithms avoid incorporating this

information altogether (Geiger et al., 1995; Intille and
Bobick, 1994), a more common approach is to extend
the one-dimensional cost function (such as Eq. (1)) to
a two-dimensional cost function. Previous attempts to
minimize such a function, however, have been com-
putationally expensive, increasing the computing time
by 800% or more in the extension from 1D to 2D
(Belhumeur and Mumford, 1992; Belhumeur, 1993;
Ohta and Kanade, 1985). Even with such a drain on
resources, the global minimum is not guaranteed to be
found, because the 2Dcost function isminimized by lo-
cal perturbations of an initial disparitymap obtained by
matching the scanlines independently (Belhumeur and
Mumford, 1992; Belhumeur, 1993). Such local tech-
niques would be often unsuccessful on poorly textured
images because of the possible occurrence of large re-
gions that are initially labeled with the wrong disparity.
The concavity of the lamp or the area to the right of the
lamp in Fig. 10 are cases in point.
In light of these observations, we have adopted

a more pragmatic approach, in which disparities are
modified in a postprocessing step only within each im-
age column independently. Although one could con-
trive images in which this column-wise method would
fail, we found it to be satisfactory in all our experi-
ments, as shown in Section 8. We also found it useful
to repeat this final postprocessing step once along the
rows.
The heuristics we used in this stage are as follows:

1. Adjacent pixels of very similar intensities (see the
definition of “intensity variation” in Section 4) can
differ in disparity by at most one pixel. This heuris-
tic is a standard limit on the gradient of disparity
(Pollard et al., 1985).

2. When disparities must be changed to enforce the
previous heuristic, very small regions are assumed
to be the ones with the wrong disparity.

3. When large adjacent regions exist that are not
separated by a sufficient intensity variation, small
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disparities override large disparities. This is because
foreground objects, even when poorly textured, are
usually surrounded by visible boundaries. As dis-
cussed in Section 4, these boundaries are assigned
the foreground disparity. As a consequence, large
regions with the wrong disparity are usually in the
background (smaller disparity). Examples of this
situation are the regions inside the lamp’s concav-
ity, to the right of the lamp, in between the bottles,
and below the table in Fig. 16.

Based on these heuristics, we have devised a method
for postprocessing the disparity map by propagating
reliable disparities into regions of unreliable dispari-
ties. This postprocessing is rather global in nature
and is quite effective at propagating the background
disparities into regions with little intensity variation.

Figure 16. The disparity maps obtained after the first propagation
step.

Moreover, it is fast, increasing the overall processing
time by less than 30%.
Each pixel is assigned a level of reliability, which is

determined by the number of contiguous pixels in the
column agreeing on their disparity. As an example, if
the disparities in a column are

[5 7 7 7 8 8 2 7 7 7 7 7]T ,

then the reliabilities of the pixels are

[1 3 3 3 2 2 1 5 5 5 5 5]T .

(The superscript T denotes transpose, indicating that
these are column vectors.)
Each pixel is then categorized based upon its relia-

bility, using a threshold tr. Any pixel whose reliability
is at least (1 + α)tr is said to be reliable, while any
pixel whose reliability is less than (1 − α)tr is said to
be unreliable, where the factors containing α create a
small buffer zone to prevent unnecessary dependence
on tr. Wecan thinkof reliable pixels as being aggressive
in propagating their values into neighboring regions,
while unreliable pixels are defenseless in maintaining
their values.
The first step of the postprocessor is rather straight-

forward. After cleaning “obvious” errors in the dispa-
rity map by coercing pixels which are surrounded on
top and bottom by the same disparity, every pixel that
is reliable propagates along its column, changing the
disparities of any of the unreliable pixels it encounters,
until it reaches an intensity variation (computed now in
the vertical direction). This propagation step enforces
heuristic 2, and is quite effective at removing the noisy
disparities, as seen by the results of Fig. 16.
Heuristic 3 is then incorporated by propagating the

background into the foreground, similar to the way we
assigned the background disparity to the untextured
pixels in Section 4.
Wemust be careful, though, not to destroy the untex-

tured surfaces that are slanted in the y direction, which
give rise to genuine changes in disparity without any
accompanying intensity variation (see the table in the
lamp image, for example). Heuristic 1, then, forbids
propagation when two adjacent regions differ by only
one disparity level.
In summary, the second postprocessing step propa-

gates reliable regions into their neighbors until an in-
tensity variation is found, as long as the disparity of
the neighbor is greater than the disparity of the propa-
gating region by at least two levels. The results of this
second step are shown in Fig. 17, where we see that the
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Figure 17. The disparity maps obtained after the second propaga-
tion step.

background has effectively propagated in many places
while preserving the slant of the table. In between the
bottles, however, some legitimate propagationwas pre-
vented because the background and the middle bottle
differ by only one disparity level.
Below the table, we also see that the intensity vari-

ation on the door hinge prevented some untextured re-
gions from being overridden, and the cord below the
table is falsely declared to be vertical. So, the two pro-
pagation steps are repeated, this time along the rows.
That is, reliability is determined by the number of con-
tiguous pixels in a row agreeing on their disparity, and
disparities are then propagated horizontally. This pro-
pagation has less theoretical justification than that done
by columns, but it helps to fill in some of the remaining
gaps, as seen in the figures of the next section. As a
final step, the disparity map is cleaned by mode filter-
ing. The final results on our two running examples are
shown in Figs. 18 and 22 in Section 8, which presents
several other sets of results as well.

Figure 18. The lamp images.

8. Experimental Results

In this section we present the results of our algo-
rithm on nine different stereo image pairs. The first six
were taken in our laboratory with a single Pulnix cam-
era which was translated along a baseline of 10 mm;
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there was little geometric distortion due to the long
focal length (16 mm) of the Nikon lens, which was
slightly defocused to remove aliasing. The last three
are from other laboratories. These nine image pairs
represent a wide variety of situations, such as indoor
and outdoor scenes, textured and untextured objects,
textured and untextured backgrounds, curved and pla-
nar surfaces, specular and matte surfaces, and fronto-
parallel and slanted surfaces (in the x and y directions).
Our algorithm’s output—both disparitymaps anddepth
discontinuities—are shown in Figs. 18–25 with respect
to the left image. The depth discontinuities are defined
as those pixels that border a change of at least two
disparity levels and that lie on the far object.
The output on these images demonstrates the effec-

tiveness of the algorithm at reconstructing a rough dis-
parity map and, more importantly for our purposes,
accurate depth discontinuities. The algorithm correctly
places the depth discontinuities along the object con-
tours, even when the background wall has roughly
constant intensity. Moreover, even though the disconti-
nuities are represented as binary maps with no linking,
they formcontiguous one-pixel-thick chains around the
objects.
In Fig. 18, the depth discontinuities are nearly per-

fect. Notice that the depth discontinuities are correctly
placed along the edges of the table support and the lamp
cord, even though the only texture between the two is a
little door hinge. Also, the table is recovered as a series
of constant-disparity strips whose disparity decreases
as the table recedes.
It is instructive to imagine how other stereo algo-

rithms would handle these lamp images. By doing so,
we will discover that this pair of images, although per-
haps appearing easy at first glance, actually presents
a challenge to existing techniques. Algorithms such
as those by Geiger et al. (1995), Intille and Bobick
(1994), Belhumeur and Mumford (1992), Belhumeur
(1993), and Cox et al. (1996), which match the scan-
lines independently but have no mechanism for pre-
ferring to place discontinuities near intensity variation
(or intensity edges) would not place the discontinuities
along the contour of the lamp. Moreover, the concav-
ity of the lamp would not be filled in, because none
of their postprocessing methods use intensity varia-
tion, and in fact the first two methods do not postpro-
cess the disparity map at all. Similarly, the algorithms
of Luo and Burkhardt (1995) and of Jones and
Malik (1992) would fail to find the boundary between
the lamp and the background because they also have
no mechanism for preferring intensity variation. Al-
though they use windows to accumulate support, the

Figure 19. The textured lamp images.

windows would invariably be smaller than our untex-
tured regions. More promising are the algorithms of
Fua (1991) and of Cochran andMedioni (1992), which
try to align the depth discontinuities with the intensity
edges, but it is not clear how well they would perform
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Figure 20. The random objects images.

on these images because the initial disparitymapwould
be so far from the true solution. As another approach,
feature-based algorithms (Baker and Binford, 1981;
Ohta and Kanade, 1985; Grimson, 1985) are good

Figure 21. The slant images.

candidates for handling untextured regions, but they
require smart interpolation schemes. Moreover, they
use large thresholds for declaring intensity edges (as
opposed to our small threshold for declaring intensity
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Figure 22. The Clorox images.

variation), and thus eliminate much of the information
in the image.
Returning to our algorithm, we note that it does not

require untextured regions—as long as some intensity

Figure 23. The doorway images.

variation still accompanies the depth discontinuities.
For example, Fig. 19 shows similar performance in the
case of a textured background, although the depth dis-
continuities around the lamp are more jagged (Notice
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Figure 24. The shrub images.

the accurate detection of the boundary between the
boxes and the background). As another example, the
top section of the wine bottle in Fig. 20 is correctly re-
covered, as well as the right edge of the spray paint can

Figure 25. The meter images.

(column 110). The algorithm does not need strong in-
tensity edges, as is evident from the barely discernible
edge of the recorder in Fig. 23 (column 190), although
without any intensity variation the algorithm will fail
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(see the triangular wedge cut out of the left Clorox
bottle in Fig. 20).
The results of Fig. 21 are especially worth noting.

Even though the algorithm generally assumes fronto-
parallel surfaces and has no explicit representation of a
slanted surface, the depth discontinuities are recovered
in the presence of both horizontal and vertical slant. Of
course, the disparity map is only approximate (and yet
the receding disparity strips of the table are preserved),
but the contours around the objects are crisp.
Both the power and the drawback of ignoring one-

level disparity transitions in the labelling of depth dis-
continuities are evident from these images. On the
one hand, many false transitions are ignored, such as
those on the slanted table and the boxes of Fig. 21. At
the same time, however, some true transitions are im-
properly missed, such as the back edge of the table in
Fig. 18 and themiddle Clorox bottle in Fig. 22. It is im-
portant to note that, even in principle, this problem of
using a threshold can never be eliminated completely,
because it is impossible to determine the discontinuities
of a continuous function from discrete data.
Figure 23 shows the algorithm’s output in a different

type of scene—one that amobile robotmight encounter
as it navigates through a doorway. In these images,
the extreme slant of the door on the right causes the
algorithm to mistakenly label the door edge as a depth
discontinuity when in reality it is a surface-normal dis-
continuity. In addition, the errors in the center of the
image are caused by a lack of information along scan-
lines to differentiate a disparity of two from a disparity
of three, and once several adjacent scanlines have in-
correctly labeled the disparity, our postprocessor can-
not recover. Nevertheless, the outline of the recorder,
table, doorway, door, and distant background are all
accurately recovered.
Figures 24 and 25 show the algorithm’s effectiveness

on two standard outdoor image pairs from the well-
known JISCT data set (Bolles et al., 1993). In Fig. 24
the boundary between the wall of the building and the
foreground is, for the most part, accurately recovered
(the errors between the shrub and thewall are due to the
wind blowing the leaves while the camera was being
moved). Notice that the slope of the ground plane is
also correctly preserved. In Fig. 25, although the dis-
continuities around the bush on the left are very jagged
and two discontinuities are incorrectly labeled near the
top of the image, many of the true discontinuities are
found. For example, the boundary between the wall of
the building and the foreground objects, the boundaries

between the individual bushes, and one side of themid-
dle parking meter are all approximately detected (the
left meter cannot be separated from the bush behind
it without subpixel resolution). Moreover, the vertical
boundary between the two buildings and the outline
of the car are accurately recovered (the error just below
the mirror is due to a photometric difference between
the two images—perhaps a shadow appeared while the
camera was being moved).
In Fig. 26 we show the results of our algorithm on a

stereo pair of images from the University of Tsukuba
Multiview Image Database,7 for which ground truth
is available. The basic structure of the scene, includ-
ing sharp discontinuities, is preserved, although sig-
nificant errors occur in the top-right corner of the
image, the video camera and table, and the neck of
the lamp. According to ground truth, 80% of the pixels
in the disparity map have the correct value, and over
96% have a disparity within one level of the correct
value (See Fig. 27). This latter value is useful because
it allows for potential discretization errors in the ground
truth. From Table 1, whose entries come from Boykov
et al. (1998), we see that our algorithm outperforms
every other method except for their multiway-cut algo-
rithm (GPM-MRF), which takes at least two orders of
magnitude as much computing time as ours.
Probably the main drawback to our algorithm is its

brittleness. Because of its emphasis on speed and on
preserving sharp changes in disparity, the algorithm is
heavily dependent upon local information. If a bound-
ary has no accompanying intensity variation for sev-
eral scanlines in a row, then that boundary will not be
found. Similarly, if an object has no texture (imagine,
for example, if the door hinge in the lower-right sec-
tion of Fig. 18were not present), then disparities are not
carried from another, disjointed region. Moreover, the
postprocessing steps can produce unexpected results

Table 1. Comparisonwith other algorithmson the images from
the University of Tsukuba. Algorithm names are from (Boykov
et al., 1998).

Total errors Errors > ±1
Algorithm (%) (%)

GPM-MRF (Boykov et al., 1998) 8.6 2.8
Pixel-to-pixel (this paper) 19.0 5.7
LOG-filtered L1 19.9 9.0
Normalized correlation 24.7 10.0
MLMHV (Cox et al., 1996) 24.5 11.0
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Figure 26. The images from the University of Tsukuba.

on slanted surfaces, such as the hashing of the interior
of the right box of Fig. 21.
Because the algorithm matches pixel intensities

directly without windows, it requires high-quality

Figure 27. Top: Ground truth disparity map; Middle: White pixels
have incorrect disparity in our map; Bottom: White pixels have a
disparity error greater than one level.

images. The cameras must be aligned, and their gains
and biases calibrated. We have noticed a substantial
decrease in performance when aliasing is present, the
images are subsampled, or the baseline is increased,
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all of which cause the intensities of objects to look less
similar in the two images.

8.1. Sensitivity to Parameters

For all the results presented in this section, the parame-
ters were set to the values in Table 2. To determine the
algorithm’s sensitivity to these parameters, we varied
each one in turn while keeping the others fixed at their
chosen values.
We found the algorithm to be entirely insensitive

to the choice of $ as long as it is larger than the ac-
tual maximum disparity: As $ varies from 20 to 50,
almost none (fewer than 0.3%) of the pixels in the dis-
parity map change value. To a lesser extent, the al-
gorithm is also fairly insensitive to the other parame-
ters: Fewer than 3% of the pixels change value as κocc
varies ±10%, κr varies ±40%, tr varies ±20%, and α

varies ±50%.
Subjectively, this 3%windowof change corresponds

to no noticeable degradation of the disparity map.
The only exception occurs when (1 − α)tr becomes
so small that the disparity strips on the table of the
lamp image are labeled as unreliable, which causes
the farthest strip of pixels (having the smallest dis-
parity) to propagate into the other strips, thus yield-
ing a table with a single disparity. The general rule
of thumb is that the parameter (1 − α)tr restricts the
maximum allowable vertical slant of an untextured ob-
ject in the scene; any object that slants more than the
parameter allows will be labeled with a single dispar-
ity unless it contains enough texture to prevent propa-
gation.

8.2. Computing Time

Compared with other stereo algorithms, our method is
fast. A personal computer equipped with a 333 MHz
Pentium II microprocessor needed less than four
seconds—2.9 for scanline matching and 0.8 for post-
processing—to compute disparity maps and depth

Table 2. The parameter settings.

Maximum disparity $ 20
Occlusion penalty κocc 25
Match reward κr 5
Reliability threshold tr 14
Reliability buffer factor α 0.15

discontinuities from these 630× 480 images, with
$ = 20. The results of Fig. 18 can be produced in just
over two seconds by setting $ = 9.

9. Necessity of Our Dissimilarity Measure

As explained in Section 5, the absolute difference in
intensity is often adequate for comparing two pixels
in stereo matching. In fact, when comparing the ab-
solute difference with our dissimilarity measure, we
found that fewer than 10% of the pixels in the dis-
parity maps changed on our six images (Birchfield
and Tomasi, 1998b). However, wherever the inten-
sity function was changing rapidly and the disparity
was not an integral number of pixels, our measure
was crucial to recovering accurate disparities. In this
section we will show that the improvements were not
due to the choice of algorithm parameters. Specif-
ically, we will demonstrate that there is no possible
choice of parameter values that will enable the ab-
solute difference measure to perform as well as our
measure.
As the parameter values κocc and κr are varied, the

disparity maps transition between two error modes:
(1) if the overall occlusion penalty is too small,
then false disparity changes are declared, or (2) if
the overall penalty is too large, then true disparity
changes are ignored. The key to producing a rea-
sonable disparity map is to find a set of parameter
values that is somewhere between these two error
modes.
We first examined the region on the right Clorox

bottle shown in Fig. 28(a). Since the correct disparity
is either seven or eight pixels, we counted the number of
pixels in the region with a disparity not equal to either
seven or eight, as we varied κocc and κr. The results are
shown in Table 3(a), where the dots represent values
that are at least as good as the one obtained with our
measure (zero). Notice that to remove the errors on the
Clorox bottle, the match reward κr must be increased
dramatically from 5 to 25.
Then we examined the region surrounding the neck

of the lamp, as shown in Fig. 28(b). As we varied
the parameters, we again counted the number of pix-
els with incorrect disparity (The correct disparity was
either eleven or twelve pixels). The results are shown
in Table 3(b). As the overall occlusion penalty is in-
creased, it becomes more and more difficult to de-
clare the occlusions necessary to distinguish the lamp
from the boxes behind it. To get a feel for what these
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Figure 28. (a) and (b) The regions examined; (c) The disparity
map around the lamp neck when κocc = 20 and κr = 14 (268 wrong
pixels), using absolute difference.

Table 3. (a) The number of pixels in the window on the Clorox
bottle with incorrect disparity, using absolute differences. The dots
represent values that are at least as good as with our measure of
dissimilarity (we had zero errors); (b) The number of pixels in the
window on the lamp neck with incorrect disparity using absolute
differences. The dots represent values that are at least as good as the
value obtained using our measure (173).

(a)

κocc

κr 10 15 20 25 30 35 40 45

2 1386 1284 1213 1099 973 850 686 556
4 1056 967 881 748 557 472 368 282
5 906 784 660 562 435 376 284 251
6 746 618 552 447 347 296 267 222
8 577 465 382 316 271 246 198 198
10 385 345 276 268 216 198 189 173
12 291 254 254 197 189 189 173 129
14 237 215 189 189 181 129 129 111
15 187 189 189 173 129 111 111 87
20 110 111 87 87 87 72 48 24
25 48 48 24 • • • • •

(b)

κocc

κr 10 15 20 25 30 35 40 45

2 • • • • • • • •
4 • • • • • • • 211
5 • • • • • • • 230
6 • • • • • • 211 249
8 • • • • • 230 268 382
10 • • • 192 249 287 363 401
12 • • 192 249 287 325 401 401
14 212 230 268 306 363 420 420 456
16 250 268 344 382 439 439 457 551
20 458 477 496 515 533 570 627 684
25 515 534 552 589 627 684 684 703

numbers mean, consider Fig. 28(c) which shows one
of the disparity maps with 268 incorrect pixels. Notice
that there are six consecutive scanlines with incorrect
disparity on the lamp neck.
The intersection of the dots in Tables 3(a) and (b) is

null: There is no choice of parameters that finds all of
the lamp neck without declaring spurious discontinu-
ities on the Clorox bottle.
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Figure 29. Backward-Looking Algorithm.

Figure 30. Forward-Looking Algorithm.

Figure 31. Faster Algorithm.

10. Conclusion

Detecting depth discontinuities is an important prob-
lem that is rarely emphasized in stereo matching. We
have presented an algorithm that sacrifices the usual
goal of accurate scene depth in favor of crisp dis-
continuities. Our algorithm matches the pixel intensi-
ties directly in the two images, without windows, thus
earning the title, “pixel-to-pixel stereo.” The algorithm
introduces four novelties: (1) a method for handling
large untextured regions, (2) a measure of pixel dis-
similarity that is insensitive to sampling effects, (3) a
technique for pruning the search space to reduce the
running time of dynamic programming, and (4) a post-
processor that quickly propagates disparity information
between scanlines to produce a cleaner disparity map.
The algorithm is fast, computes disparities and depth

discontinuities in situations where previous algorithms
would fail, and yields results that are fairly independent
of the amount of texture in the image. As always, how-
ever, limitations remain. The algorithm is rather brittle
in the sense that the violation of an assumption has
the potential of creating large errors in the output. The
detected depth discontinuities contain obvious errors,
such as boundaries terminating freely in space, jagged
boundaries, and tiny, disconnected boundaries. These
errors may possibly be removed by incorporating other
constraints, such as the smoothness of boundaries (i.e.,
the “continuity of discontinuities” (Marr and Poggio,
1979)) or aminimum length on boundaries. Finally, the
somewhat ad hoc nature of the postprocessor points to
the need for a more principled approach without sacri-
ficing speed.

A. Algorithms

In this appendix we present pseudocode for the three
algorithms of Section 6. In addition to the arraysϕ[δ, y]
and π [δ, y], two arrays are used: vL [x] is TRUE if the
pixel x in the left scanline lies to the left of intensity
variation, and is FALSE otherwise; similarly, vR[y] is
TRUE if the pixel y in the right scanline lies to the right
of intensity variation, and is FALSE otherwise.

A.1. Backward-Looking Algorithm

For simplicity, we have omitted the test if yp > 0,
which is necessary to ensure that array indexing is
in bounds. Line 7 is simply a compact formula to
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express the position of the possible preceding matches
(Fig. 12(b)). Line 8 prevents ϕ′ from being updated if
the match being considered would cause a depth dis-
continuity without intensity variation. Specifically, the
test δ > δp is true when there is a left occlusion, in
which case the depth-discontinuity pixel y + δ − 1
must lie to the left of intensity variation; similarly the
test δ < δp is true when there is a right occlusion, in
which case the depth-discontinuity pixel yp + 1 must
lie to the right of intensity variation. Line 9 updates ϕ′

by adding κocc whenever there is an occlusion. (We are
using the convention that δ )= δp is equal to 1 if there
is an occlusion and zero otherwise; ∗ denotes ordinary
multiplication.) After the for loop of lines 6–12, π̂

points to the best preceding match, and ϕ̂ holds its
value, plus any occlusion penalty. The last two lines
use this information to update the ϕ and π arrays.

A.2. Forward-Looking Algorithm

Lines 1–5 initialize the ϕ array. The equation in
line 9 expresses the position of the possible following
matches (Fig. 12(c)). The variable ϕ′ contains the cost
of the best path (so far) to [δ, y] through [δp, yp]. If
this path is better than all the paths which have already
been examined, then the best path to [δ, y] is updated
accordingly.

A.3. Faster Algorithm

The Faster Algorithm utilizes two data structures for
determining whether a cell should be expanded: mx [x]
is theminimum cost of any cell in row x (of the original
search grid), while my is the minimum cost of any cell
in the current column. The subroutine update updates
the path to the match [δ, y] if the path through [δp, yp]
is better than any path seen previously; it also main-
tains mx .
Lines 1–7 initialize the ϕ and mx arrays, while my

is initialized in line 9. The heart of the algorithm is
executed in lines 11–19, which are repeated for every
cell [δp, yp] in the ϕ array. Each cell is expanded to its
adjacent following match at the same disparity in line
11. Then, if the cell is one of the best in its column,
it is expanded in lines 13–15 to all the cells following
a left occlusion, provided that the depth-discontinuity
pixel y+ δ −1 lies to the left of intensity variation. Fi-
nally, if the cell has the lowest cost among all the cells
in its row, and if the depth-discontinuity pixel yp + 1

lies to the right of intensity variation, then the cell
is expanded in lines 17–19 to all the cells following
a right occlusion. The formula in line18 is easily under-
stood if one notices that a right occlusion occurs when
x = xp + 1, and that x = y+ δ and xp = yp + δp.
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Notes

1. The forbidden zone of a match is the hourglass region defined
by the lines of sight from the two cameras to the scene point
corresponding to the match. As long as the ordering constraint is
valid, the forbidden zone contains no matches (Faugeras, 1993).

2. Two cameras are said to be rectified if their image planes are
coplanar and their scanlines are parallel to the baseline (Nalwa,
1993).

3. The nomenclature here remains in debate. Some researchers call
the ordering constraint by other names, such as the monotonic-
ordering constraint (Nalwa, 1993), the monotonicity constraint
(Baker and Binford, 1981; Intille and Bobick, 1994), or the non-
reversal constraint (Ohta and Kanade, 1985). Geiger et al. (1995)
distinguish the ordering constraint from the monotonicity con-
straint in requiring the latter also to preclude simultaneous occlu-
sions, but this distinction is confusing because the term “mono-
tonicity” simply means that a function is non-decreasing (or non-
increasing), which is exactlywhat the ordering constraint ensures.

4. Informally, we use the terms path and match sequence inter-
changeably, as well as the terms cell and match.

5. Our experiments show that the resulting disparity maps disagree
in fewer than 0.7% of their values, for $ ranging from 14 to 40
pixels.

6. The meaning here should be clear, despite the abuse of notation.
7. Courtesy of Y. Ohta and Y. Nakamura at the University of
Tsukuba, Japan.
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