usingnamespacestd.patch
tests/ml/src/slmltests.cpp (working copy) | ||
---|---|---|
43 | 43 |
#include <iostream> |
44 | 44 |
#include <fstream> |
45 | 45 |
|
46 |
using namespace std; |
|
47 |
|
|
46 | 48 |
CV_SLMLTest::CV_SLMLTest( const char* _modelName, const char* _testName ) : |
47 | 49 |
CV_MLBaseTest( _modelName, _testName, "load-save" ) |
48 | 50 |
{ |
tests/ml/src/mltests.cpp (working copy) | ||
---|---|---|
319 | 319 |
else |
320 | 320 |
CV_Error( CV_StsBadArg, "outputs must be in the first or last column; other cases are not supported" ); |
321 | 321 |
} |
322 |
void ann_get_new_responses( CvMLData* _data, Mat& new_responses, map<int, int>& cls_map ) |
|
322 |
void ann_get_new_responses( CvMLData* _data, Mat& new_responses, std::map<int, int>& cls_map )
|
|
323 | 323 |
{ |
324 | 324 |
const CvMat* train_sidx = _data->get_train_sample_idx(); |
325 | 325 |
int* train_sidx_ptr = train_sidx->data.i; |
... | ... | |
358 | 358 |
CvMat _new_responses = CvMat( new_responses ); |
359 | 359 |
return ann->train( &predictors, &_new_responses, 0, train_sidx, _params, flags ); |
360 | 360 |
} |
361 |
float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, map<int, int>& cls_map, int type , vector<float> *resp_labels ) |
|
361 |
float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, std::map<int, int>& cls_map, int type , vector<float> *resp_labels )
|
|
362 | 362 |
{ |
363 | 363 |
float err = 0; |
364 | 364 |
const CvMat* responses = _data->get_responses(); |
... | ... | |
388 | 388 |
int cls_count = (int)cls_map.size(); |
389 | 389 |
Mat output( 1, cls_count, CV_32FC1 ); |
390 | 390 |
CvMat _output = CvMat(output); |
391 |
map<int, int>::iterator b_it = cls_map.begin(); |
|
391 |
std::map<int, int>::iterator b_it = cls_map.begin();
|
|
392 | 392 |
for( int i = 0; i < sample_count; i++ ) |
393 | 393 |
{ |
394 | 394 |
CvMat sample; |
tests/ml/src/mltest.h (working copy) | ||
---|---|---|
55 | 55 |
#include <string> |
56 | 56 |
#include <iostream> |
57 | 57 | |
58 |
using namespace std; |
|
59 | 58 |
using namespace cv; |
60 | 59 | |
61 | 60 |
#define CV_NBAYES "nbayes" |
... | ... | |
83 | 82 |
virtual int validate_test_results( int testCaseIdx ) = 0; |
84 | 83 | |
85 | 84 |
int train( int testCaseIdx ); |
86 |
float get_error( int testCaseIdx, int type, vector<float> *resp = 0 ); |
|
85 |
float get_error( int testCaseIdx, int type, std::vector<float> *resp = 0 );
|
|
87 | 86 |
void save( const char* filename ); |
88 | 87 |
void load( const char* filename ); |
89 | 88 | |
90 | 89 |
CvMLData data; |
91 | 90 |
string modelName, validationFN; |
92 |
vector<string> dataSetNames; |
|
91 |
std::vector<string> dataSetNames;
|
|
93 | 92 |
FileStorage validationFS; |
94 | 93 | |
95 | 94 |
// MLL models |
... | ... | |
103 | 102 |
CvRTrees* rtrees; |
104 | 103 |
CvERTrees* ertrees; |
105 | 104 | |
106 |
map<int, int> cls_map; |
|
105 |
std::map<int, int> cls_map;
|
|
107 | 106 | |
108 | 107 |
int64 initSeed; |
109 | 108 |
}; |
... | ... | |
125 | 124 |
virtual int run_test_case( int testCaseIdx ); |
126 | 125 |
virtual int validate_test_results( int testCaseIdx ); |
127 | 126 | |
128 |
vector<float> test_resps1, test_resps2; // predicted responses for test data |
|
127 |
std::vector<float> test_resps1, test_resps2; // predicted responses for test data
|
|
129 | 128 |
char fname1[50], fname2[50]; |
130 | 129 |
}; |
131 | 130 |
modules/flann/include/opencv2/flann/result_set.h (working copy) | ||
---|---|---|
37 | 37 |
#include <vector> |
38 | 38 |
#include "opencv2/flann/dist.h" |
39 | 39 | |
40 |
using namespace std; |
|
41 | 40 | |
42 | ||
43 | 41 |
namespace cvflann |
44 | 42 |
{ |
45 | 43 | |
... | ... | |
181 | 179 |
// bubble up |
182 | 180 |
while (i>=1 && (dists[i]<dists[i-1] || (dists[i]==dists[i-1] && indices[i]<indices[i-1]) ) ) { |
183 | 181 |
// while (i>=1 && (dists[i]<dists[i-1]) ) { |
184 |
swap(indices[i],indices[i-1]); |
|
185 |
swap(dists[i],dists[i-1]); |
|
182 |
std::swap(indices[i],indices[i-1]);
|
|
183 |
std::swap(dists[i],dists[i-1]);
|
|
186 | 184 |
i--; |
187 | 185 |
} |
188 | 186 | |
... | ... | |
191 | 189 | |
192 | 190 |
float worstDist() const |
193 | 191 |
{ |
194 |
return (count<capacity) ? numeric_limits<float>::max() : dists[count-1]; |
|
192 |
return (count<capacity) ? std::numeric_limits<float>::max() : dists[count-1];
|
|
195 | 193 |
} |
196 | 194 |
}; |
197 | 195 | |
... | ... | |
215 | 213 |
} |
216 | 214 |
}; |
217 | 215 | |
218 |
vector<Item> items; |
|
216 |
std::vector<Item> items;
|
|
219 | 217 |
float radius; |
220 | 218 | |
221 | 219 |
bool sorted; |
modules/flann/include/opencv2/flann/autotuned_index.h (working copy) | ||
---|---|---|
224 | 224 |
float totalCost; |
225 | 225 |
}; |
226 | 226 | |
227 |
typedef pair<CostData, KDTreeIndexParams> KDTreeCostData; |
|
228 |
typedef pair<CostData, KMeansIndexParams> KMeansCostData; |
|
227 |
typedef std::pair<CostData, KDTreeIndexParams> KDTreeCostData;
|
|
228 |
typedef std::pair<CostData, KMeansIndexParams> KMeansCostData;
|
|
229 | 229 | |
230 | 230 | |
231 | 231 |
void evaluate_kmeans(CostData& cost, const KMeansIndexParams& kmeans_params) |
... | ... | |
338 | 338 | |
339 | 339 |
int kmeansParamSpaceSize = ARRAY_LEN(maxIterations)*ARRAY_LEN(branchingFactors); |
340 | 340 | |
341 |
vector<KMeansCostData> kmeansCosts(kmeansParamSpaceSize); |
|
341 |
std::vector<KMeansCostData> kmeansCosts(kmeansParamSpaceSize);
|
|
342 | 342 | |
343 | 343 |
// CostData* kmeansCosts = new CostData[kmeansParamSpaceSize]; |
344 | 344 | |
... | ... | |
356 | 356 |
int k = cnt; |
357 | 357 |
// order by time cost |
358 | 358 |
while (k>0 && kmeansCosts[k].first.timeCost < kmeansCosts[k-1].first.timeCost) { |
359 |
swap(kmeansCosts[k],kmeansCosts[k-1]); |
|
359 |
std::swap(kmeansCosts[k],kmeansCosts[k-1]);
|
|
360 | 360 |
--k; |
361 | 361 |
} |
362 | 362 |
++cnt; |
... | ... | |
391 | 391 | |
392 | 392 |
int k = i; |
393 | 393 |
while (k>0 && kmeansCosts[k].first.totalCost < kmeansCosts[k-1].first.totalCost) { |
394 |
swap(kmeansCosts[k],kmeansCosts[k-1]); |
|
394 |
std::swap(kmeansCosts[k],kmeansCosts[k-1]);
|
|
395 | 395 |
k--; |
396 | 396 |
} |
397 | 397 |
} |
... | ... | |
417 | 417 |
int testTrees[] = { 1, 4, 8, 16, 32 }; |
418 | 418 | |
419 | 419 |
size_t kdtreeParamSpaceSize = ARRAY_LEN(testTrees); |
420 |
vector<KDTreeCostData> kdtreeCosts(kdtreeParamSpaceSize); |
|
420 |
std::vector<KDTreeCostData> kdtreeCosts(kdtreeParamSpaceSize);
|
|
421 | 421 | |
422 | 422 |
// evaluate kdtree for all parameter combinations |
423 | 423 |
int cnt = 0; |
... | ... | |
429 | 429 |
int k = cnt; |
430 | 430 |
// order by time cost |
431 | 431 |
while (k>0 && kdtreeCosts[k].first.timeCost < kdtreeCosts[k-1].first.timeCost) { |
432 |
swap(kdtreeCosts[k],kdtreeCosts[k-1]); |
|
432 |
std::swap(kdtreeCosts[k],kdtreeCosts[k-1]);
|
|
433 | 433 |
--k; |
434 | 434 |
} |
435 | 435 |
++cnt; |
... | ... | |
461 | 461 | |
462 | 462 |
int k = (int)i; |
463 | 463 |
while (k>0 && kdtreeCosts[k].first.totalCost < kdtreeCosts[k-1].first.totalCost) { |
464 |
swap(kdtreeCosts[k],kdtreeCosts[k-1]); |
|
464 |
std::swap(kdtreeCosts[k],kdtreeCosts[k-1]);
|
|
465 | 465 |
k--; |
466 | 466 |
} |
467 | 467 |
} |
... | ... | |
484 | 484 |
IndexParams* estimateBuildParams() |
485 | 485 |
{ |
486 | 486 |
int sampleSize = int(index_params.sample_fraction*dataset.rows); |
487 |
int testSampleSize = min(sampleSize/10, 1000); |
|
487 |
int testSampleSize = std::min(sampleSize/10, 1000);
|
|
488 | 488 | |
489 | 489 |
logger().info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d\n",dataset.rows, sampleSize, testSampleSize); |
490 | 490 | |
... | ... | |
550 | 550 | |
551 | 551 |
float speedup = 0; |
552 | 552 | |
553 |
int samples = (int)min(dataset.rows/10, SAMPLE_COUNT); |
|
553 |
int samples = (int)std::min(dataset.rows/10, SAMPLE_COUNT);
|
|
554 | 554 |
if (samples>0) { |
555 | 555 |
Matrix<ELEM_TYPE> testDataset = random_sample(dataset,samples); |
556 | 556 |
modules/flann/include/opencv2/flann/nn_index.h (working copy) | ||
---|---|---|
36 | 36 |
#include "opencv2/flann/general.h" |
37 | 37 |
#include "opencv2/flann/matrix.h" |
38 | 38 | |
39 |
using namespace std; |
|
40 | ||
41 | 39 |
namespace cvflann |
42 | 40 |
{ |
43 | 41 |
modules/flann/include/opencv2/flann/dist.h (working copy) | ||
---|---|---|
32 | 32 |
#define _OPENCV_DIST_H_ |
33 | 33 | |
34 | 34 |
#include <cmath> |
35 |
using namespace std; |
|
36 | ||
37 | 35 |
#include "opencv2/flann/general.h" |
38 | 36 | |
39 | 37 |
namespace cvflann |
modules/flann/include/opencv2/flann/index_testing.h (working copy) | ||
---|---|---|
41 | 41 |
#include "opencv2/flann/timer.h" |
42 | 42 | |
43 | 43 | |
44 |
using namespace std; |
|
45 | ||
46 | 44 |
namespace cvflann |
47 | 45 |
{ |
48 | 46 | |
... | ... | |
207 | 205 |
const float SEARCH_EPS = 0.001; |
208 | 206 | |
209 | 207 |
// make sure precisions array is sorted |
210 |
sort(precisions, precisions+precisions_length); |
|
208 |
std::sort(precisions, precisions+precisions_length);
|
|
211 | 209 | |
212 | 210 |
int pindex = 0; |
213 | 211 |
float precision = precisions[pindex]; |
modules/flann/include/opencv2/flann/kmeans_index.h (working copy) | ||
---|---|---|
46 | 46 |
#include "opencv2/flann/allocator.h" |
47 | 47 |
#include "opencv2/flann/random.h" |
48 | 48 | |
49 |
using namespace std; |
|
50 | ||
51 | 49 |
namespace cvflann |
52 | 50 |
{ |
53 | 51 | |
... | ... | |
353 | 351 |
// Compute the new potential |
354 | 352 |
double newPot = 0; |
355 | 353 |
for (int i = 0; i < n; i++) |
356 |
newPot += min( flann_dist(dataset[indices[i]], dataset[indices[i]] + dataset.cols, dataset[indices[index]]), closestDistSq[i] ); |
|
354 |
newPot += std::min( flann_dist(dataset[indices[i]], dataset[indices[i]] + dataset.cols, dataset[indices[index]]), closestDistSq[i] );
|
|
357 | 355 | |
358 | 356 |
// Store the best result |
359 | 357 |
if (bestNewPot < 0 || newPot < bestNewPot) { |
... | ... | |
366 | 364 |
centers[centerCount] = indices[bestNewIndex]; |
367 | 365 |
currentPot = bestNewPot; |
368 | 366 |
for (int i = 0; i < n; i++) |
369 |
closestDistSq[i] = min( flann_dist(dataset[indices[i]], dataset[indices[i]]+dataset.cols, dataset[indices[bestNewIndex]]), closestDistSq[i] ); |
|
367 |
closestDistSq[i] = std::min( flann_dist(dataset[indices[i]], dataset[indices[i]]+dataset.cols, dataset[indices[bestNewIndex]]), closestDistSq[i] );
|
|
370 | 368 |
} |
371 | 369 | |
372 | 370 |
centers_length = centerCount; |
... | ... | |
402 | 400 |
branching = params.branching; |
403 | 401 |
max_iter = params.iterations; |
404 | 402 |
if (max_iter<0) { |
405 |
max_iter = numeric_limits<int>::max(); |
|
403 |
max_iter = std::numeric_limits<int>::max();
|
|
406 | 404 |
} |
407 | 405 |
flann_centers_init_t centersInit = params.centers_init; |
408 | 406 | |
... | ... | |
711 | 709 | |
712 | 710 |
if (indices_length < branching) { |
713 | 711 |
node->indices = indices; |
714 |
sort(node->indices,node->indices+indices_length); |
|
712 |
std::sort(node->indices,node->indices+indices_length);
|
|
715 | 713 |
node->childs = NULL; |
716 | 714 |
return; |
717 | 715 |
} |
... | ... | |
722 | 720 | |
723 | 721 |
if (centers_length<branching) { |
724 | 722 |
node->indices = indices; |
725 |
sort(node->indices,node->indices+indices_length); |
|
723 |
std::sort(node->indices,node->indices+indices_length);
|
|
726 | 724 |
node->childs = NULL; |
727 | 725 |
return; |
728 | 726 |
} |
... | ... | |
859 | 857 |
double d = flann_dist(dataset[indices[i]],dataset[indices[i]]+veclen_,zero()); |
860 | 858 |
variance += d; |
861 | 859 |
mean_radius += sqrt(d); |
862 |
swap(indices[i],indices[end]); |
|
863 |
swap(belongs_to[i],belongs_to[end]); |
|
860 |
std::swap(indices[i],indices[end]);
|
|
861 |
std::swap(belongs_to[i],belongs_to[end]);
|
|
864 | 862 |
end++; |
865 | 863 |
} |
866 | 864 |
} |
... | ... | |
1072 | 1070 |
float meanVariance = root->variance*root->size; |
1073 | 1071 | |
1074 | 1072 |
while (clusterCount<clusters_length) { |
1075 |
float minVariance = numeric_limits<float>::max(); |
|
1073 |
float minVariance = std::numeric_limits<float>::max();
|
|
1076 | 1074 |
int splitIndex = -1; |
1077 | 1075 | |
1078 | 1076 |
for (int i=0;i<clusterCount;++i) { |
modules/flann/include/opencv2/flann/kdtree_index.h (working copy) | ||
---|---|---|
45 | 45 |
#include "opencv2/flann/random.h" |
46 | 46 |
#include "opencv2/flann/saving.h" |
47 | 47 | |
48 |
using namespace std; |
|
49 | 48 | |
50 | ||
51 | 49 |
namespace cvflann |
52 | 50 |
{ |
53 | 51 | |
... | ... | |
232 | 230 |
/* Randomize the order of vectors to allow for unbiased sampling. */ |
233 | 231 |
for (int j = (int)size_; j > 0; --j) { |
234 | 232 |
int rnd = rand_int(j); |
235 |
swap(vind[j-1], vind[rnd]); |
|
233 |
std::swap(vind[j-1], vind[rnd]);
|
|
236 | 234 |
} |
237 | 235 |
trees[i] = divideTree(0, (int)size_ - 1); |
238 | 236 |
} |
... | ... | |
384 | 382 |
/* Compute mean values. Only the first SAMPLE_MEAN values need to be |
385 | 383 |
sampled to get a good estimate. |
386 | 384 |
*/ |
387 |
int end = min(first + SAMPLE_MEAN, last); |
|
385 |
int end = std::min(first + SAMPLE_MEAN, last);
|
|
388 | 386 |
for (int j = first; j <= end; ++j) { |
389 | 387 |
ELEM_TYPE* v = dataset[vind[j]]; |
390 | 388 |
for (size_t k=0; k<veclen_; ++k) { |
... | ... | |
432 | 430 |
/* Bubble end value down to right location by repeated swapping. */ |
433 | 431 |
int j = num - 1; |
434 | 432 |
while (j > 0 && v[topind[j]] > v[topind[j-1]]) { |
435 |
swap(topind[j], topind[j-1]); |
|
433 |
std::swap(topind[j], topind[j-1]);
|
|
436 | 434 |
--j; |
437 | 435 |
} |
438 | 436 |
} |
... | ... | |
459 | 457 |
++i; |
460 | 458 |
} else { |
461 | 459 |
/* Move to end of list by swapping vind i and j. */ |
462 |
swap(vind[i], vind[j]); |
|
460 |
std::swap(vind[i], vind[j]);
|
|
463 | 461 |
--j; |
464 | 462 |
} |
465 | 463 |
} |
... | ... | |
506 | 504 | |
507 | 505 |
int checkCount = 0; |
508 | 506 |
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); |
509 |
vector<bool> checked(size_,false); |
|
507 |
std::vector<bool> checked(size_,false);
|
|
510 | 508 | |
511 | 509 |
/* Search once through each tree down to root. */ |
512 | 510 |
for (i = 0; i < numTrees; ++i) { |
... | ... | |
530 | 528 |
* at least "mindistsq". |
531 | 529 |
*/ |
532 | 530 |
void searchLevel(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, Tree node, float mindistsq, int& checkCount, int maxCheck, |
533 |
Heap<BranchSt>* heap, vector<bool>& checked) |
|
531 |
Heap<BranchSt>* heap, std::vector<bool>& checked)
|
|
534 | 532 |
{ |
535 | 533 |
if (result.worstDist()<mindistsq) { |
536 | 534 |
// printf("Ignoring branch, too far\n"); |
modules/flann/include/opencv2/flann/sampling.h (working copy) | ||
---|---|---|
56 | 56 |
dest = srcMatrix[srcMatrix.rows-i-1]; |
57 | 57 |
src = srcMatrix[r]; |
58 | 58 |
for (size_t j=0;j<srcMatrix.cols;++j) { |
59 |
swap(*src,*dest); |
|
59 |
std::swap(*src,*dest);
|
|
60 | 60 |
src++; |
61 | 61 |
dest++; |
62 | 62 |
} |
modules/flann/include/opencv2/flann/heap.h (working copy) | ||
---|---|---|
33 | 33 | |
34 | 34 | |
35 | 35 |
#include <algorithm> |
36 |
using namespace std; |
|
37 | ||
38 | 36 |
namespace cvflann |
39 | 37 |
{ |
40 | 38 | |
... | ... | |
152 | 150 |
* Returns the node of minimum value from the heap (top of the heap). |
153 | 151 |
* |
154 | 152 |
* Params: |
155 |
* value = out parameter used to return the min element |
|
153 |
* value = out parameter used to return the std::min element
|
|
156 | 154 |
* Returns: false if heap empty |
157 | 155 |
*/ |
158 | 156 |
bool popMin(T& value) |
... | ... | |
162 | 160 |
} |
163 | 161 | |
164 | 162 |
/* Switch first node with last. */ |
165 |
swap(heap[1],heap[count]); |
|
163 |
std::swap(heap[1],heap[count]);
|
|
166 | 164 | |
167 | 165 |
count -= 1; |
168 | 166 |
heapify(1); /* Move new node 1 to right position. */ |
... | ... | |
195 | 193 |
minloc = right; |
196 | 194 |
} |
197 | 195 | |
198 |
/* If a child was smaller, than swap parent with it and Heapify. */ |
|
196 |
/* If a child was smaller, than std::swap parent with it and Heapify. */
|
|
199 | 197 |
if (minloc != parent) { |
200 |
swap(heap[parent],heap[minloc]); |
|
198 |
std::swap(heap[parent],heap[minloc]);
|
|
201 | 199 |
heapify(minloc); |
202 | 200 |
} |
203 | 201 |
} |
modules/flann/include/opencv2/flann/logger.h (working copy) | ||
---|---|---|
36 | 36 |
#include <stdarg.h> |
37 | 37 |
#include "opencv2/flann/general.h" |
38 | 38 | |
39 |
using namespace std; |
|
40 | ||
41 | 39 |
namespace cvflann |
42 | 40 |
{ |
43 | 41 |
modules/flann/include/opencv2/flann/random.h (working copy) | ||
---|---|---|
35 | 35 |
#include <cstdlib> |
36 | 36 |
#include <cassert> |
37 | 37 | |
38 |
using namespace std; |
|
39 | ||
40 | 38 |
namespace cvflann |
41 | 39 |
{ |
42 | 40 | |
... | ... | |
109 | 107 |
// int rand = cast(int) (drand48() * n); |
110 | 108 |
int rnd = rand_int(i); |
111 | 109 |
assert(rnd >=0 && rnd < i); |
112 |
swap(vals[i-1], vals[rnd]); |
|
110 |
std::swap(vals[i-1], vals[rnd]);
|
|
113 | 111 |
} |
114 | 112 | |
115 | 113 |
counter = 0; |
modules/flann/include/opencv2/flann/ground_truth.h (working copy) | ||
---|---|---|
66 | 66 |
int j = dcnt-1; |
67 | 67 |
// bubble up |
68 | 68 |
while (j>=1 && dists[j]<dists[j-1]) { |
69 |
swap(dists[j],dists[j-1]); |
|
70 |
swap(match[j],match[j-1]); |
|
69 |
std::swap(dists[j],dists[j-1]);
|
|
70 |
std::swap(match[j],match[j-1]);
|
|
71 | 71 |
j--; |
72 | 72 |
} |
73 | 73 |
} |
modules/flann/include/opencv2/flann/flann_base.hpp (working copy) | ||
---|---|---|
109 | 109 | |
110 | 110 | |
111 | 111 |
template<typename T> |
112 |
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const string& filename) |
|
112 |
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const std::string& filename)
|
|
113 | 113 |
{ |
114 | 114 |
FILE* fin = fopen(filename.c_str(), "rb"); |
115 | 115 |
if (fin==NULL) { |
... | ... | |
222 | 222 | |
223 | 223 | |
224 | 224 |
template<typename T> |
225 |
void Index<T>::save(string filename) |
|
225 |
void Index<T>::save(std::string filename)
|
|
226 | 226 |
{ |
227 | 227 |
FILE* fout = fopen(filename.c_str(), "wb"); |
228 | 228 |
if (fout==NULL) { |
modules/contrib/src/chamfermatching.cpp (working copy) | ||
---|---|---|
51 | 51 |
namespace cv |
52 | 52 |
{ |
53 | 53 | |
54 |
using namespace std; |
|
54 | 55 |
using std::queue; |
55 | 56 |
|
56 | 57 |
typedef pair<int,int> coordinate_t; |
modules/imgproc/src/gcgraph.hpp (working copy) | ||
---|---|---|
42 | 42 |
#ifndef _CV_GCGRAPH_H_ |
43 | 43 |
#define _CV_GCGRAPH_H_ |
44 | 44 | |
45 |
using namespace std; |
|
46 | ||
47 | 45 |
template <class TWeight> class GCGraph |
48 | 46 |
{ |
49 | 47 |
public: |
... | ... | |
76 | 74 |
TWeight weight; |
77 | 75 |
}; |
78 | 76 | |
79 |
vector<Vtx> vtcs; |
|
80 |
vector<Edge> edges; |
|
77 |
std::vector<Vtx> vtcs;
|
|
78 |
std::vector<Edge> edges;
|
|
81 | 79 |
TWeight flow; |
82 | 80 |
}; |
83 | 81 | |
... | ... | |
158 | 156 |
Vtx *vtxPtr = &vtcs[0]; |
159 | 157 |
Edge *edgePtr = &edges[0]; |
160 | 158 | |
161 |
vector<Vtx*> orphans; |
|
159 |
std::vector<Vtx*> orphans;
|
|
162 | 160 | |
163 | 161 |
// initialize the active queue and the graph vertices |
164 | 162 |
for( int i = 0; i < (int)vtcs.size(); i++ ) |