1 | |
2 | //
|
3 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
4 | //
|
5 | // By downloading, copying, installing or using the software you agree to this license.
|
6 | // If you do not agree to this license, do not download, install,
|
7 | // copy or use the software.
|
8 | //
|
9 | //
|
10 | // License Agreement
|
11 | // For Open Source Computer Vision Library
|
12 | //
|
13 | // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
14 | // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
15 | // Third party copyrights are property of their respective owners.
|
16 | //
|
17 | // @Authors
|
18 | // Peng Xiao, [email protected]
|
19 | //
|
20 | // Redistribution and use in source and binary forms, with or without modification,
|
21 | // are permitted provided that the following conditions are met:
|
22 | //
|
23 | // * Redistribution's of source code must retain the above copyright notice,
|
24 | // this list of conditions and the following disclaimer.
|
25 | //
|
26 | // * Redistribution's in binary form must reproduce the above copyright notice,
|
27 | // this list of conditions and the following disclaimer in the documentation
|
28 | // and/or other materials provided with the distribution.
|
29 | //
|
30 | // * The name of the copyright holders may not be used to endorse or promote products
|
31 | // derived from this software without specific prior written permission.
|
32 | //
|
33 | // This software is provided by the copyright holders and contributors as is and
|
34 | // any express or implied warranties, including, but not limited to, the implied
|
35 | // warranties of merchantability and fitness for a particular purpose are disclaimed.
|
36 | // In no event shall the Intel Corporation or contributors be liable for any direct,
|
37 | // indirect, incidental, special, exemplary, or consequential damages
|
38 | // (including, but not limited to, procurement of substitute goods or services;
|
39 | // loss of use, data, or profits; or business interruption) however caused
|
40 | // and on any theory of liability, whether in contract, strict liability,
|
41 | // or tort (including negligence or otherwise) arising in any way out of
|
42 | // the use of this software, even if advised of the possibility of such damage.
|
43 | //
|
44 | //M*/
|
45 | #include "precomp.hpp"
|
46 |
|
47 | #ifdef HAVE_OPENCV_OCL
|
48 | #include <cstdio>
|
49 | #include <sstream>
|
50 | #include "opencl_kernels.hpp"
|
51 |
|
52 | using namespace cv;
|
53 | using namespace cv::ocl;
|
54 |
|
55 | namespace cv
|
56 | {
|
57 | namespace ocl
|
58 | {
|
59 |
|
60 | const static int ORI_SEARCH_INC = 5;
|
61 |
|
62 | const static int ORI_LOCAL_SIZE = (360 / ORI_SEARCH_INC);
|
63 |
|
64 | static void openCLExecuteKernelSURF(Context *clCxt, const cv::ocl::ProgramEntry* source, string kernelName, size_t globalThreads[3],
|
65 | size_t localThreads[3], std::vector< std::pair<size_t, const void *> > &args, int channels, int depth)
|
66 | {
|
67 | std::stringstream optsStr;
|
68 | optsStr << "-D ORI_LOCAL_SIZE=" << ORI_LOCAL_SIZE << " ";
|
69 | optsStr << "-D ORI_SEARCH_INC=" << ORI_SEARCH_INC << " ";
|
70 | cl_kernel kernel;
|
71 | kernel = openCLGetKernelFromSource(clCxt, source, kernelName, optsStr.str().c_str());
|
72 | size_t wave_size = queryWaveFrontSize(kernel);
|
73 | CV_Assert(clReleaseKernel(kernel) == CL_SUCCESS);
|
74 | optsStr << "-D WAVE_SIZE=" << wave_size;
|
75 | openCLExecuteKernel(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth, optsStr.str().c_str());
|
76 | }
|
77 |
|
78 | }
|
79 | }
|
80 |
|
81 | static inline int calcSize(int octave, int layer)
|
82 | {
|
83 |
|
84 | const int HAAR_SIZE0 = 9;
|
85 |
|
86 | |
87 | such that the wavelet sizes in an octave are either all even or all odd.
|
88 | This ensures that when looking for the neighbors of a sample, the layers
|
89 |
|
90 | above and below are aligned correctly. */
|
91 | const int HAAR_SIZE_INC = 6;
|
92 |
|
93 | return (HAAR_SIZE0 + HAAR_SIZE_INC * layer) << octave;
|
94 | }
|
95 |
|
96 |
|
97 | class SURF_OCL_Invoker
|
98 | {
|
99 | public:
|
100 |
|
101 | void bindImgTex(const oclMat &img, cl_mem &texture);
|
102 |
|
103 |
|
104 |
|
105 |
|
106 |
|
107 | void icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, int octave, int nOctaveLayers, int layer_rows);
|
108 |
|
109 | void icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat &trace, oclMat &maxPosBuffer, oclMat &maxCounter, int counterOffset,
|
110 | int octave, bool use_mask, int nLayers, int layer_rows, int layer_cols);
|
111 |
|
112 | void icvInterpolateKeypoint_gpu(const oclMat &det, const oclMat &maxPosBuffer, int maxCounter,
|
113 | oclMat &keypoints, oclMat &counters, int octave, int layer_rows, int maxFeatures);
|
114 |
|
115 | void icvCalcOrientation_gpu(const oclMat &keypoints, int nFeatures);
|
116 |
|
117 | void icvSetUpright_gpu(const oclMat &keypoints, int nFeatures);
|
118 |
|
119 | void compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures);
|
120 |
|
121 |
|
122 | SURF_OCL_Invoker(SURF_OCL &surf, const oclMat &img, const oclMat &mask) :
|
123 | surf_(surf),
|
124 | img_cols(img.cols), img_rows(img.rows),
|
125 | use_mask(!mask.empty()), counters(oclMat()),
|
126 | imgTex(NULL), sumTex(NULL), maskSumTex(NULL), _img(img)
|
127 | {
|
128 | CV_Assert(!img.empty() && img.type() == CV_8UC1);
|
129 | CV_Assert(mask.empty() || (mask.size() == img.size() && mask.type() == CV_8UC1));
|
130 | CV_Assert(surf_.nOctaves > 0 && surf_.nOctaveLayers > 0);
|
131 |
|
132 | const int min_size = calcSize(surf_.nOctaves - 1, 0);
|
133 | CV_Assert(img_rows - min_size >= 0);
|
134 | CV_Assert(img_cols - min_size >= 0);
|
135 |
|
136 | const int layer_rows = img_rows >> (surf_.nOctaves - 1);
|
137 | const int layer_cols = img_cols >> (surf_.nOctaves - 1);
|
138 | const int min_margin = ((calcSize((surf_.nOctaves - 1), 2) >> 1) >> (surf_.nOctaves - 1)) + 1;
|
139 | CV_Assert(layer_rows - 2 * min_margin > 0);
|
140 | CV_Assert(layer_cols - 2 * min_margin > 0);
|
141 |
|
142 | maxFeatures = std::min(static_cast<int>(img.size().area() * surf.keypointsRatio), 65535);
|
143 | maxCandidates = std::min(static_cast<int>(1.5 * maxFeatures), 65535);
|
144 |
|
145 | CV_Assert(maxFeatures > 0);
|
146 |
|
147 | counters.create(1, surf_.nOctaves + 1, CV_32SC1);
|
148 | counters.setTo(Scalar::all(0));
|
149 |
|
150 | integral(img, surf_.sum);
|
151 |
|
152 | bindImgTex(img, imgTex);
|
153 | bindImgTex(surf_.sum, sumTex);
|
154 | finish();
|
155 |
|
156 | maskSumTex = 0;
|
157 |
|
158 | if (use_mask)
|
159 | {
|
160 | CV_Error(CV_StsBadFunc, "Masked SURF detector is not implemented yet");
|
161 |
|
162 |
|
163 |
|
164 |
|
165 |
|
166 |
|
167 |
|
168 | }
|
169 | }
|
170 |
|
171 | void detectKeypoints(oclMat &keypoints)
|
172 | {
|
173 |
|
174 |
|
175 | ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.det);
|
176 | ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.trace);
|
177 |
|
178 | ensureSizeIsEnough(1, maxCandidates, CV_32SC4, surf_.maxPosBuffer);
|
179 | ensureSizeIsEnough(SURF_OCL::ROWS_COUNT, maxFeatures, CV_32FC1, keypoints);
|
180 | keypoints.setTo(Scalar::all(0));
|
181 |
|
182 | for (int octave = 0; octave < surf_.nOctaves; ++octave)
|
183 | {
|
184 | const int layer_rows = img_rows >> octave;
|
185 | const int layer_cols = img_cols >> octave;
|
186 |
|
187 |
|
188 |
|
189 | icvCalcLayerDetAndTrace_gpu(surf_.det, surf_.trace, octave, surf_.nOctaveLayers, layer_rows);
|
190 |
|
191 | icvFindMaximaInLayer_gpu(surf_.det, surf_.trace, surf_.maxPosBuffer, counters, 1 + octave,
|
192 | octave, use_mask, surf_.nOctaveLayers, layer_rows, layer_cols);
|
193 |
|
194 | int maxCounter = ((Mat)counters).at<int>(1 + octave);
|
195 | maxCounter = std::min(maxCounter, static_cast<int>(maxCandidates));
|
196 |
|
197 | if (maxCounter > 0)
|
198 | {
|
199 | icvInterpolateKeypoint_gpu(surf_.det, surf_.maxPosBuffer, maxCounter,
|
200 | keypoints, counters, octave, layer_rows, maxFeatures);
|
201 | }
|
202 | }
|
203 | int featureCounter = Mat(counters).at<int>(0);
|
204 | featureCounter = std::min(featureCounter, static_cast<int>(maxFeatures));
|
205 |
|
206 | keypoints.cols = featureCounter;
|
207 |
|
208 | if (surf_.upright)
|
209 | {
|
210 |
|
211 | setUpright(keypoints);
|
212 | }
|
213 | else
|
214 | {
|
215 | findOrientation(keypoints);
|
216 | }
|
217 | }
|
218 |
|
219 | void setUpright(oclMat &keypoints)
|
220 | {
|
221 | const int nFeatures = keypoints.cols;
|
222 | if(nFeatures > 0)
|
223 | {
|
224 | icvSetUpright_gpu(keypoints, keypoints.cols);
|
225 | }
|
226 | }
|
227 |
|
228 | void findOrientation(oclMat &keypoints)
|
229 | {
|
230 | const int nFeatures = keypoints.cols;
|
231 | if (nFeatures > 0)
|
232 | {
|
233 | icvCalcOrientation_gpu(keypoints, nFeatures);
|
234 | }
|
235 | }
|
236 |
|
237 | void computeDescriptors(const oclMat &keypoints, oclMat &descriptors, int descriptorSize)
|
238 | {
|
239 | const int nFeatures = keypoints.cols;
|
240 | if (nFeatures > 0)
|
241 | {
|
242 | ensureSizeIsEnough(nFeatures, descriptorSize, CV_32F, descriptors);
|
243 | compute_descriptors_gpu(descriptors, keypoints, nFeatures);
|
244 | }
|
245 | }
|
246 |
|
247 | ~SURF_OCL_Invoker()
|
248 | {
|
249 | if(imgTex)
|
250 | openCLFree(imgTex);
|
251 | if(sumTex)
|
252 | openCLFree(sumTex);
|
253 | if(maskSumTex)
|
254 | openCLFree(maskSumTex);
|
255 | }
|
256 |
|
257 | private:
|
258 | SURF_OCL &surf_;
|
259 |
|
260 | int img_cols, img_rows;
|
261 |
|
262 | bool use_mask;
|
263 |
|
264 | int maxCandidates;
|
265 | int maxFeatures;
|
266 |
|
267 | oclMat counters;
|
268 |
|
269 |
|
270 | cl_mem imgTex;
|
271 | cl_mem sumTex;
|
272 | cl_mem maskSumTex;
|
273 |
|
274 | const oclMat _img;
|
275 |
|
276 | SURF_OCL_Invoker &operator= (const SURF_OCL_Invoker &right)
|
277 | {
|
278 | (*this) = right;
|
279 | return *this;
|
280 | }
|
281 | };
|
282 |
|
283 | cv::ocl::SURF_OCL::SURF_OCL()
|
284 | {
|
285 | hessianThreshold = 100.0f;
|
286 | extended = true;
|
287 | nOctaves = 4;
|
288 | nOctaveLayers = 2;
|
289 | keypointsRatio = 0.01f;
|
290 | upright = false;
|
291 | }
|
292 |
|
293 | cv::ocl::SURF_OCL::SURF_OCL(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, float _keypointsRatio, bool _upright)
|
294 | {
|
295 | hessianThreshold = saturate_cast<float>(_threshold);
|
296 | extended = _extended;
|
297 | nOctaves = _nOctaves;
|
298 | nOctaveLayers = _nOctaveLayers;
|
299 | keypointsRatio = _keypointsRatio;
|
300 | upright = _upright;
|
301 | }
|
302 |
|
303 | int cv::ocl::SURF_OCL::descriptorSize() const
|
304 | {
|
305 | return extended ? 128 : 64;
|
306 | }
|
307 |
|
308 | void cv::ocl::SURF_OCL::uploadKeypoints(const vector<KeyPoint> &keypoints, oclMat &keypointsGPU)
|
309 | {
|
310 | if (keypoints.empty())
|
311 | keypointsGPU.release();
|
312 | else
|
313 | {
|
314 | Mat keypointsCPU(SURF_OCL::ROWS_COUNT, static_cast<int>(keypoints.size()), CV_32FC1);
|
315 |
|
316 | float *kp_x = keypointsCPU.ptr<float>(SURF_OCL::X_ROW);
|
317 | float *kp_y = keypointsCPU.ptr<float>(SURF_OCL::Y_ROW);
|
318 | int *kp_laplacian = keypointsCPU.ptr<int>(SURF_OCL::LAPLACIAN_ROW);
|
319 | int *kp_octave = keypointsCPU.ptr<int>(SURF_OCL::OCTAVE_ROW);
|
320 | float *kp_size = keypointsCPU.ptr<float>(SURF_OCL::SIZE_ROW);
|
321 | float *kp_dir = keypointsCPU.ptr<float>(SURF_OCL::ANGLE_ROW);
|
322 | float *kp_hessian = keypointsCPU.ptr<float>(SURF_OCL::HESSIAN_ROW);
|
323 |
|
324 | for (size_t i = 0, size = keypoints.size(); i < size; ++i)
|
325 | {
|
326 | const KeyPoint &kp = keypoints[i];
|
327 | kp_x[i] = kp.pt.x;
|
328 | kp_y[i] = kp.pt.y;
|
329 | kp_octave[i] = kp.octave;
|
330 | kp_size[i] = kp.size;
|
331 | kp_dir[i] = kp.angle;
|
332 | kp_hessian[i] = kp.response;
|
333 | kp_laplacian[i] = 1;
|
334 | }
|
335 |
|
336 | keypointsGPU.upload(keypointsCPU);
|
337 | }
|
338 | }
|
339 |
|
340 | void cv::ocl::SURF_OCL::downloadKeypoints(const oclMat &keypointsGPU, vector<KeyPoint> &keypoints)
|
341 | {
|
342 | const int nFeatures = keypointsGPU.cols;
|
343 |
|
344 | if (nFeatures == 0)
|
345 | keypoints.clear();
|
346 | else
|
347 | {
|
348 | CV_Assert(keypointsGPU.type() == CV_32FC1 && keypointsGPU.rows == ROWS_COUNT);
|
349 |
|
350 | Mat keypointsCPU(keypointsGPU);
|
351 |
|
352 | keypoints.resize(nFeatures);
|
353 |
|
354 | float *kp_x = keypointsCPU.ptr<float>(SURF_OCL::X_ROW);
|
355 | float *kp_y = keypointsCPU.ptr<float>(SURF_OCL::Y_ROW);
|
356 | int *kp_laplacian = keypointsCPU.ptr<int>(SURF_OCL::LAPLACIAN_ROW);
|
357 | int *kp_octave = keypointsCPU.ptr<int>(SURF_OCL::OCTAVE_ROW);
|
358 | float *kp_size = keypointsCPU.ptr<float>(SURF_OCL::SIZE_ROW);
|
359 | float *kp_dir = keypointsCPU.ptr<float>(SURF_OCL::ANGLE_ROW);
|
360 | float *kp_hessian = keypointsCPU.ptr<float>(SURF_OCL::HESSIAN_ROW);
|
361 |
|
362 | for (int i = 0; i < nFeatures; ++i)
|
363 | {
|
364 | KeyPoint &kp = keypoints[i];
|
365 | kp.pt.x = kp_x[i];
|
366 | kp.pt.y = kp_y[i];
|
367 | kp.class_id = kp_laplacian[i];
|
368 | kp.octave = kp_octave[i];
|
369 | kp.size = kp_size[i];
|
370 | kp.angle = kp_dir[i];
|
371 | kp.response = kp_hessian[i];
|
372 | }
|
373 | }
|
374 | }
|
375 |
|
376 | void cv::ocl::SURF_OCL::downloadDescriptors(const oclMat &descriptorsGPU, vector<float> &descriptors)
|
377 | {
|
378 | if (descriptorsGPU.empty())
|
379 | descriptors.clear();
|
380 | else
|
381 | {
|
382 | CV_Assert(descriptorsGPU.type() == CV_32F);
|
383 |
|
384 | descriptors.resize(descriptorsGPU.rows * descriptorsGPU.cols);
|
385 | Mat descriptorsCPU(descriptorsGPU.size(), CV_32F, &descriptors[0]);
|
386 | descriptorsGPU.download(descriptorsCPU);
|
387 | }
|
388 | }
|
389 |
|
390 | void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat &keypoints)
|
391 | {
|
392 | if (!img.empty())
|
393 | {
|
394 | SURF_OCL_Invoker surf(*this, img, mask);
|
395 |
|
396 | surf.detectKeypoints(keypoints);
|
397 | }
|
398 | }
|
399 |
|
400 | void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat &keypoints, oclMat &descriptors,
|
401 | bool useProvidedKeypoints)
|
402 | {
|
403 | if (!img.empty())
|
404 | {
|
405 | SURF_OCL_Invoker surf(*this, img, mask);
|
406 |
|
407 | if (!useProvidedKeypoints)
|
408 | surf.detectKeypoints(keypoints);
|
409 | else if (!upright)
|
410 | {
|
411 | surf.findOrientation(keypoints);
|
412 | }
|
413 |
|
414 | surf.computeDescriptors(keypoints, descriptors, descriptorSize());
|
415 | }
|
416 | }
|
417 |
|
418 | void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, vector<KeyPoint> &keypoints)
|
419 | {
|
420 | oclMat keypointsGPU;
|
421 |
|
422 | (*this)(img, mask, keypointsGPU);
|
423 |
|
424 | downloadKeypoints(keypointsGPU, keypoints);
|
425 | }
|
426 |
|
427 | void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, vector<KeyPoint> &keypoints,
|
428 | oclMat &descriptors, bool useProvidedKeypoints)
|
429 | {
|
430 | oclMat keypointsGPU;
|
431 |
|
432 | if (useProvidedKeypoints)
|
433 | uploadKeypoints(keypoints, keypointsGPU);
|
434 |
|
435 | (*this)(img, mask, keypointsGPU, descriptors, useProvidedKeypoints);
|
436 |
|
437 | downloadKeypoints(keypointsGPU, keypoints);
|
438 | }
|
439 |
|
440 | void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, vector<KeyPoint> &keypoints,
|
441 | vector<float> &descriptors, bool useProvidedKeypoints)
|
442 | {
|
443 | oclMat descriptorsGPU;
|
444 |
|
445 | (*this)(img, mask, keypoints, descriptorsGPU, useProvidedKeypoints);
|
446 |
|
447 | downloadDescriptors(descriptorsGPU, descriptors);
|
448 | }
|
449 |
|
450 | void cv::ocl::SURF_OCL::releaseMemory()
|
451 | {
|
452 | sum.release();
|
453 | mask1.release();
|
454 | maskSum.release();
|
455 | intBuffer.release();
|
456 | det.release();
|
457 | trace.release();
|
458 | maxPosBuffer.release();
|
459 | }
|
460 |
|
461 |
|
462 |
|
463 | void SURF_OCL_Invoker::bindImgTex(const oclMat &img, cl_mem &texture)
|
464 | {
|
465 | if(texture)
|
466 | {
|
467 | openCLFree(texture);
|
468 | }
|
469 | texture = bindTexture(img);
|
470 | }
|
471 |
|
472 |
|
473 |
|
474 | void SURF_OCL_Invoker::icvCalcLayerDetAndTrace_gpu(oclMat &det, oclMat &trace, int octave, int nOctaveLayers, int c_layer_rows)
|
475 | {
|
476 | const int min_size = calcSize(octave, 0);
|
477 | const int max_samples_i = 1 + ((img_rows - min_size) >> octave);
|
478 | const int max_samples_j = 1 + ((img_cols - min_size) >> octave);
|
479 |
|
480 | Context *clCxt = det.clCxt;
|
481 | string kernelName = "icvCalcLayerDetAndTrace";
|
482 | std::vector< std::pair<size_t, const void *> > args;
|
483 |
|
484 | if(sumTex)
|
485 | {
|
486 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sumTex));
|
487 | }
|
488 | else
|
489 | {
|
490 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.sum.data));
|
491 | }
|
492 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&det.data));
|
493 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&trace.data));
|
494 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&det.step));
|
495 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&trace.step));
|
496 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_rows));
|
497 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_cols));
|
498 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&nOctaveLayers));
|
499 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&octave));
|
500 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&c_layer_rows));
|
501 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&surf_.sum.step));
|
502 |
|
503 | size_t localThreads[3] = {16, 16, 1};
|
504 | size_t globalThreads[3] =
|
505 | {
|
506 | divUp(max_samples_j, localThreads[0]) * localThreads[0],
|
507 | divUp(max_samples_i, localThreads[1]) * localThreads[1] *(nOctaveLayers + 2),
|
508 | 1
|
509 | };
|
510 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
511 | }
|
512 |
|
513 | void SURF_OCL_Invoker::icvFindMaximaInLayer_gpu(const oclMat &det, const oclMat &trace, oclMat &maxPosBuffer, oclMat &maxCounter, int counterOffset,
|
514 | int octave, bool useMask, int nLayers, int layer_rows, int layer_cols)
|
515 | {
|
516 | const int min_margin = ((calcSize(octave, 2) >> 1) >> octave) + 1;
|
517 |
|
518 | Context *clCxt = det.clCxt;
|
519 | string kernelName = useMask ? "icvFindMaximaInLayer_withmask" : "icvFindMaximaInLayer";
|
520 | std::vector< std::pair<size_t, const void *> > args;
|
521 |
|
522 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&det.data));
|
523 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&trace.data));
|
524 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&maxPosBuffer.data));
|
525 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&maxCounter.data));
|
526 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&counterOffset));
|
527 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&det.step));
|
528 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&trace.step));
|
529 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_rows));
|
530 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_cols));
|
531 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&nLayers));
|
532 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&octave));
|
533 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&layer_rows));
|
534 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&layer_cols));
|
535 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&maxCandidates));
|
536 | args.push_back( std::make_pair( sizeof(cl_float), (void *)&surf_.hessianThreshold));
|
537 |
|
538 | if(useMask)
|
539 | {
|
540 | if(maskSumTex)
|
541 | {
|
542 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&maskSumTex));
|
543 | }
|
544 | else
|
545 | {
|
546 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.maskSum.data));
|
547 | }
|
548 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.maskSum.step));
|
549 | }
|
550 | size_t localThreads[3] = {16, 16, 1};
|
551 | size_t globalThreads[3] = {divUp(layer_cols - 2 * min_margin, localThreads[0] - 2) *localThreads[0],
|
552 | divUp(layer_rows - 2 * min_margin, localThreads[1] - 2) *nLayers *localThreads[1],
|
553 | 1
|
554 | };
|
555 |
|
556 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
557 | }
|
558 |
|
559 | void SURF_OCL_Invoker::icvInterpolateKeypoint_gpu(const oclMat &det, const oclMat &maxPosBuffer, int maxCounter,
|
560 | oclMat &keypoints, oclMat &counters_, int octave, int layer_rows, int max_features)
|
561 | {
|
562 | Context *clCxt = det.clCxt;
|
563 | string kernelName = "icvInterpolateKeypoint";
|
564 | std::vector< std::pair<size_t, const void *> > args;
|
565 |
|
566 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&det.data));
|
567 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&maxPosBuffer.data));
|
568 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
569 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&counters_.data));
|
570 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&det.step));
|
571 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
572 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_rows));
|
573 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_cols));
|
574 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&octave));
|
575 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&layer_rows));
|
576 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&max_features));
|
577 |
|
578 | size_t localThreads[3] = {3, 3, 3};
|
579 | size_t globalThreads[3] = {maxCounter *localThreads[0], localThreads[1], 1};
|
580 |
|
581 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
582 | }
|
583 |
|
584 | void SURF_OCL_Invoker::icvCalcOrientation_gpu(const oclMat &keypoints, int nFeatures)
|
585 | {
|
586 | Context *clCxt = counters.clCxt;
|
587 | string kernelName = "icvCalcOrientation";
|
588 |
|
589 | std::vector< std::pair<size_t, const void *> > args;
|
590 |
|
591 | if(sumTex)
|
592 | {
|
593 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&sumTex));
|
594 | }
|
595 | else
|
596 | {
|
597 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&surf_.sum.data));
|
598 | }
|
599 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
600 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
601 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_rows));
|
602 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&img_cols));
|
603 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&surf_.sum.step));
|
604 |
|
605 | size_t localThreads[3] = {ORI_LOCAL_SIZE, 1, 1};
|
606 | size_t globalThreads[3] = {nFeatures * localThreads[0], 1, 1};
|
607 |
|
608 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
609 | }
|
610 |
|
611 | void SURF_OCL_Invoker::icvSetUpright_gpu(const oclMat &keypoints, int nFeatures)
|
612 | {
|
613 | Context *clCxt = counters.clCxt;
|
614 | string kernelName = "icvSetUpright";
|
615 |
|
616 | std::vector< std::pair<size_t, const void *> > args;
|
617 |
|
618 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
619 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
620 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&nFeatures));
|
621 |
|
622 | size_t localThreads[3] = {256, 1, 1};
|
623 | size_t globalThreads[3] = {saturate_cast<size_t>(nFeatures), 1, 1};
|
624 |
|
625 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
626 | }
|
627 |
|
628 |
|
629 | void SURF_OCL_Invoker::compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures)
|
630 | {
|
631 |
|
632 | Context *clCxt = descriptors.clCxt;
|
633 | string kernelName;
|
634 | std::vector< std::pair<size_t, const void *> > args;
|
635 | size_t localThreads[3] = {1, 1, 1};
|
636 | size_t globalThreads[3] = {1, 1, 1};
|
637 |
|
638 | if(descriptors.cols == 64)
|
639 | {
|
640 | kernelName = "compute_descriptors64";
|
641 |
|
642 | localThreads[0] = 6;
|
643 | localThreads[1] = 6;
|
644 |
|
645 | globalThreads[0] = nFeatures * localThreads[0];
|
646 | globalThreads[1] = 16 * localThreads[1];
|
647 |
|
648 | args.clear();
|
649 | if(imgTex)
|
650 | {
|
651 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&imgTex));
|
652 | }
|
653 | else
|
654 | {
|
655 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&_img.data));
|
656 | }
|
657 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
658 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
659 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
660 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
661 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.rows));
|
662 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.cols));
|
663 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.step));
|
664 |
|
665 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
666 |
|
667 | kernelName = "normalize_descriptors64";
|
668 |
|
669 | localThreads[0] = 64;
|
670 | localThreads[1] = 1;
|
671 |
|
672 | globalThreads[0] = nFeatures * localThreads[0];
|
673 | globalThreads[1] = localThreads[1];
|
674 |
|
675 | args.clear();
|
676 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
677 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
678 |
|
679 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
680 | }
|
681 | else
|
682 | {
|
683 | kernelName = "compute_descriptors128";
|
684 |
|
685 | localThreads[0] = 6;
|
686 | localThreads[1] = 6;
|
687 |
|
688 | globalThreads[0] = nFeatures * localThreads[0];
|
689 | globalThreads[1] = 16 * localThreads[1];
|
690 |
|
691 | args.clear();
|
692 | if(imgTex)
|
693 | {
|
694 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&imgTex));
|
695 | }
|
696 | else
|
697 | {
|
698 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&_img.data));
|
699 | }
|
700 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
701 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data));
|
702 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
703 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypoints.step));
|
704 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.rows));
|
705 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.cols));
|
706 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&_img.step));
|
707 |
|
708 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
709 |
|
710 | kernelName = "normalize_descriptors128";
|
711 |
|
712 | localThreads[0] = 128;
|
713 | localThreads[1] = 1;
|
714 |
|
715 | globalThreads[0] = nFeatures * localThreads[0];
|
716 | globalThreads[1] = localThreads[1];
|
717 |
|
718 | args.clear();
|
719 | args.push_back( std::make_pair( sizeof(cl_mem), (void *)&descriptors.data));
|
720 | args.push_back( std::make_pair( sizeof(cl_int), (void *)&descriptors.step));
|
721 |
|
722 | openCLExecuteKernelSURF(clCxt, &surf, kernelName, globalThreads, localThreads, args, -1, -1);
|
723 | }
|
724 | }
|
725 |
|
726 | #endif
|