0002-connectedComponents-peep-hole-optimizations-mostly-s.patch

Jason Newton, 2012-08-27 03:15 pm

Download (26.8 kB)

 
b/modules/imgproc/include/opencv2/imgproc/imgproc.hpp
1055 1055
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
1056 1056
                                 OutputArray result, int method );
1057 1057

  
1058

  
1059
struct CV_EXPORTS ConnectedComponentStats
1060
{
1061
    int32_t lower_x;
1062
    int32_t lower_y;
1063
    int32_t upper_x;
1064
    int32_t upper_y;
1065
    double centroid_x;
1066
    double centroid_y;
1067
    uint64_t integral_x;
1068
    uint64_t integral_y;
1069
    uint32_t area;
1070
};
1058 1071
//! computes the connected components labeled image of boolean image I with 4 or 8 way connectivity - returns N, the total
1059
//number of labels [0, N-1] where 0 represents the background label.
1072
//number of labels [0, N-1] where 0 represents the background label. L's value type determines the label type, an important
1073
//consideration based on the total number of labels or alternatively the total number of pixels.
1060 1074
CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity = 8);
1075
CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity = 8);
1061 1076

  
1062 1077

  
1063 1078
//! mode of the contour retrieval algorithm
b/modules/imgproc/src/connectedcomponents.cpp
41 41
//M*/
42 42
//
43 43
#include "precomp.hpp"
44
#include <vector>
44 45

  
45 46
namespace cv{
46 47
    namespace connectedcomponents{
47
    using std::vector;
48

  
49
    template<typename LabelT>
50
    struct NoOp{
51
        NoOp(){
52
        }
53
        void init(const LabelT labels){
54
            (void) labels;
55
        }
56
        inline
57
        void operator()(int r, int c, LabelT l){
58
            (void) r;
59
            (void) c;
60
            (void) l;
61
        }
62
        void finish(){}
63
    };
64
    template<typename LabelT>
65
    struct CCStatsOp{
66
        std::vector<cv::ConnectedComponentStats> &statsv;
67
        CCStatsOp(std::vector<cv::ConnectedComponentStats> &_statsv): statsv(_statsv){
68
        }
69
        inline
70
        void init(const LabelT nlabels){
71
            statsv.clear();
72
            cv::ConnectedComponentStats stats = cv::ConnectedComponentStats();
73
            stats.lower_x = std::numeric_limits<LabelT>::max();
74
            stats.lower_y = std::numeric_limits<LabelT>::max();
75
            stats.upper_x = std::numeric_limits<LabelT>::min();
76
            stats.upper_y = std::numeric_limits<LabelT>::min();
77
            stats.centroid_x = 0;
78
            stats.centroid_y = 0;
79
            stats.integral_x = 0;
80
            stats.integral_y = 0;
81
            stats.area = 0;
82
            statsv.resize(nlabels, stats);
83
        }
84
        void operator()(int r, int c, LabelT l){
85
            ConnectedComponentStats &stats = statsv[l];
86
            if(c > stats.upper_x){
87
                stats.upper_x = c;
88
            }else{
89
                if(c < stats.lower_x){
90
                    stats.lower_x = c;
91
                }
92
            }
93
            if(r > stats.upper_y){
94
                stats.upper_y = r;
95
            }else{
96
                if(r < stats.lower_y){
97
                    stats.lower_y = r;
98
                }
99
            }
100
            stats.integral_x += c;
101
            stats.integral_y += r;
102
            stats.area++;
103
        }
104
        void finish(){
105
            for(size_t l = 0; l < statsv.size(); ++l){
106
                ConnectedComponentStats &stats = statsv[l];
107
                stats.lower_x = std::min(stats.lower_x, stats.upper_x);
108
                stats.lower_y = std::min(stats.lower_y, stats.upper_y);
109
                stats.centroid_x = stats.integral_x / double(stats.area);
110
                stats.centroid_y = stats.integral_y / double(stats.area);
111
            }
112
        }
113
    };
48 114

  
49 115
    //Find the root of the tree of node i
50 116
    template<typename LabelT>
51 117
    inline static
52
    LabelT findRoot(const vector<LabelT> &P, LabelT i){
118
    LabelT findRoot(const LabelT *P, LabelT i){
53 119
        LabelT root = i;
54 120
        while(P[root] < root){
55 121
            root = P[root];
......
60 126
    //Make all nodes in the path of node i point to root
61 127
    template<typename LabelT>
62 128
    inline static
63
    void setRoot(vector<LabelT> &P, LabelT i, LabelT root){
129
    void setRoot(LabelT *P, LabelT i, LabelT root){
64 130
        while(P[i] < i){
65 131
            LabelT j = P[i];
66 132
            P[i] = root;
......
72 138
    //Find the root of the tree of the node i and compress the path in the process
73 139
    template<typename LabelT>
74 140
    inline static
75
    LabelT find(vector<LabelT> &P, LabelT i){
141
    LabelT find(LabelT *P, LabelT i){
76 142
        LabelT root = findRoot(P, i);
77 143
        setRoot(P, i, root);
78 144
        return root;
......
81 147
    //unite the two trees containing nodes i and j and return the new root
82 148
    template<typename LabelT>
83 149
    inline static
84
    LabelT set_union(vector<LabelT> &P, LabelT i, LabelT j){
150
    LabelT set_union(LabelT *P, LabelT i, LabelT j){
85 151
        LabelT root = findRoot(P, i);
86 152
        if(i != j){
87 153
            LabelT rootj = findRoot(P, j);
......
97 163
    //Flatten the Union Find tree and relabel the components
98 164
    template<typename LabelT>
99 165
    inline static
100
    LabelT flattenL(vector<LabelT> &P){
166
    LabelT flattenL(LabelT *P, LabelT length){
101 167
        LabelT k = 1;
102
        for(size_t i = 1; i < P.size(); ++i){
168
        for(LabelT i = 1; i < length; ++i){
103 169
            if(P[i] < i){
104 170
                P[i] = P[P[i]];
105 171
            }else{
......
109 175
        return k;
110 176
    }
111 177

  
112
    ////Flatten the Union Find tree - inconsistent labels
113
    //void flatten(int P[], int size){
114
    //    for(int i = 1; i < size; ++i){
115
    //        P[i] = P[P[i]];
116
    //    }
117
    //}
118
    const int G4[2][2] = {{-1, 0}, {0, -1}};//b, d neighborhoods
119
    const int G8[4][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
120 178
    //Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
121 179
    //using decision trees
122 180
    //Kesheng Wu, et al
123
    template<typename LabelT, typename PixelT, int connectivity = 8>
181
    //Note: rows are encoded as position in the "rows" array to save lookup times
182
    //reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods
183
    const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods
184
    //reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
185
    const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods
186
    template<typename LabelT, typename PixelT, typename StatsOp = NoOp<LabelT>, int connectivity = 8>
124 187
    struct LabelingImpl{
125
    LabelT operator()(Mat &L, const Mat &I){
188
    LabelT operator()(Mat &L, const Mat &I, StatsOp &sop){
126 189
        const int rows = L.rows;
127 190
        const int cols = L.cols;
128
        size_t nPixels = size_t(rows) * cols;
129
        vector<LabelT> P; P.push_back(0);
130
        LabelT l = 1;
191
        size_t Plength = (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3);
192
        if(connectivity == 4){
193
            Plength = 4 * Plength;//a quick and dirty upper bound, an exact answer exists if you want to find it
194
            //the 4 comes from the fact that a 3x3 block can never have more than 4 unique labels
195
        }
196
        LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength);
197
        P[0] = 0;
198
        LabelT lunique = 1;
131 199
        //scanning phase
132 200
        for(int r_i = 0; r_i < rows; ++r_i){
133
            for(int c_i = 0; c_i < cols; ++c_i){
134
                if(!I.at<PixelT>(r_i, c_i)){
135
                    L.at<LabelT>(r_i, c_i) = 0;
136
                    continue;
137
                }
138
                if(connectivity == 8){
139
                    const int a = 0;
140
                    const int b = 1;
141
                    const int c = 2;
142
                    const int d = 3;
143

  
144
                    bool T[4];
145

  
146
                    for(size_t i = 0; i < 4; ++i){
147
                        int gr = r_i + G8[i][0];
148
                        int gc = c_i + G8[i][1];
149
                        T[i] = false;
150
                        if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
151
                            if(I.at<PixelT>(gr, gc)){
152
                                T[i] = true;
153
                            }
154
                        }
201
            LabelT *Lrow = (LabelT *)(L.data + L.step.p[0] * r_i);
202
            LabelT *Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]);
203
            const PixelT *Irow = (PixelT *)(I.data + I.step.p[0] * r_i);
204
            const PixelT *Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]);
205
            LabelT *Lrows[2] = {
206
                Lrow,
207
                Lrow_prev
208
            };
209
            const PixelT *Irows[2] = {
210
                Irow,
211
                Irow_prev
212
            };
213
            if(connectivity == 8){
214
                const int a = 0;
215
                const int b = 1;
216
                const int c = 2;
217
                const int d = 3;
218
                const bool T_a_r = (r_i - G8[a][0]) >= 0;
219
                const bool T_b_r = (r_i - G8[b][0]) >= 0;
220
                const bool T_c_r = (r_i - G8[c][0]) >= 0;
221
                for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
222
                    if(!*Irows[0]){
223
                        Lrow[c_i] = 0;
224
                        continue;
155 225
                    }
226
                    Irows[1] = Irow_prev + c_i;
227
                    Lrows[0] = Lrow + c_i;
228
                    Lrows[1] = Lrow_prev + c_i;
229
                    const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0   && *(Irows[G8[a][0]] + G8[a][1]);
230
                    const bool T_b = T_b_r                            && *(Irows[G8[b][0]] + G8[b][1]);
231
                    const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]);
232
                    const bool T_d =          (c_i + G8[d][1]) >= 0   && *(Irows[G8[d][0]] + G8[d][1]);
156 233

  
157 234
                    //decision tree
158
                    if(T[b]){
235
                    if(T_b){
159 236
                        //copy(b)
160
                        L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[b][0], c_i + G8[b][1]);
237
                        *Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]);
161 238
                    }else{//not b
162
                        if(T[c]){
163
                            if(T[a]){
239
                        if(T_c){
240
                            if(T_a){
164 241
                                //copy(c, a)
165
                                L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]));
242
                                *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1]));
166 243
                            }else{
167
                                if(T[d]){
244
                                if(T_d){
168 245
                                    //copy(c, d)
169
                                    L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]));
246
                                    *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1]));
170 247
                                }else{
171 248
                                    //copy(c)
172
                                    L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]);
249
                                    *Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]);
173 250
                                }
174 251
                            }
175 252
                        }else{//not c
176
                            if(T[a]){
253
                            if(T_a){
177 254
                                //copy(a)
178
                                L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]);
255
                                *Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]);
179 256
                            }else{
180
                                if(T[d]){
257
                                if(T_d){
181 258
                                    //copy(d)
182
                                    L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]);
259
                                    *Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]);
183 260
                                }else{
184 261
                                    //new label
185
                                    L.at<LabelT>(r_i, c_i) = l;
186
                                    P.push_back(l);//P[l] = l;
187
                                    l = l + 1;
262
                                    *Lrows[0] = lunique;
263
                                    P[lunique] = lunique;
264
                                    lunique = lunique + 1;
188 265
                                }
189 266
                            }
190 267
                        }
191 268
                    }
192
                }else{
193
                    //B & D only
194
                    const int b = 0;
195
                    const int d = 1;
196
                    assert(connectivity == 4);
197
                    bool T[2];
198
                    for(size_t i = 0; i < 2; ++i){
199
                        int gr = r_i + G4[i][0];
200
                        int gc = c_i + G4[i][1];
201
                        T[i] = false;
202
                        if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
203
                            if(I.at<PixelT>(gr, gc)){
204
                                T[i] = true;
205
                            }
206
                        }
269
                }
270
            }else{
271
                //B & D only
272
                assert(connectivity == 4);
273
                const int b = 0;
274
                const int d = 1;
275
                const bool T_b_r = (r_i - G4[b][0]) >= 0;
276
                for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
277
                    if(!*Irows[0]){
278
                        Lrow[c_i] = 0;
279
                        continue;
207 280
                    }
208

  
209
                    if(T[b]){
210
                        if(T[d]){
281
                    Irows[1] = Irow_prev + c_i;
282
                    Lrows[0] = Lrow + c_i;
283
                    Lrows[1] = Lrow_prev + c_i;
284
                    const bool T_b = T_b_r                            && *(Irows[G4[b][0]] + G4[b][1]);
285
                    const bool T_d =          (c_i + G4[d][1]) >= 0   && *(Irows[G4[d][0]] + G4[d][1]);
286
                    if(T_b){
287
                        if(T_d){
211 288
                            //copy(d, b)
212
                            L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]), L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]));
289
                            *Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1]));
213 290
                        }else{
214 291
                            //copy(b)
215
                            L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]);
292
                            *Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]);
216 293
                        }
217 294
                    }else{
218
                        if(T[d]){
295
                        if(T_d){
219 296
                            //copy(d)
220
                            L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]);
297
                            *Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]);
221 298
                        }else{
222 299
                            //new label
223
                            L.at<LabelT>(r_i, c_i) = l;
224
                            P.push_back(l);//P[l] = l;
225
                            l = l + 1;
300
                            *Lrows[0] = lunique;
301
                            P[lunique] = lunique;
302
                            lunique = lunique + 1;
226 303
                        }
227 304
                    }
228

  
229 305
                }
230 306
            }
231 307
        }
232 308

  
233 309
        //analysis
234
        LabelT nLabels = flattenL(P);
310
        LabelT nLabels = flattenL(P, lunique);
311
        sop.init(nLabels);
235 312

  
236
        //assign final labels
237
        for(size_t r = 0; r < rows; ++r){
238
            for(size_t c = 0; c < cols; ++c){
239
                L.at<LabelT>(r, c) = P[L.at<LabelT>(r, c)];
313
        for(int r_i = 0; r_i < rows; ++r_i){
314
            LabelT *Lrow_start = (LabelT *)(L.data + L.step.p[0] * r_i);
315
            LabelT *Lrow_end = Lrow_start + cols;
316
            LabelT *Lrow = Lrow_start;
317
            for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){
318
                const LabelT l = P[*Lrow];
319
                *Lrow = l;
320
                sop(r_i, c_i, l);
240 321
            }
241 322
        }
242 323

  
324
        sop.finish();
325
        fastFree(P);
326

  
243 327
        return nLabels;
244 328
    }//End function LabelingImpl operator()
245 329

  
......
247 331
}//end namespace connectedcomponents
248 332

  
249 333
//L's type must have an appropriate depth for the number of pixels in I
250
uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
334
template<typename StatsOp>
335
uint64_t connectedComponents_sub1(Mat &L, const Mat &I, int connectivity, StatsOp &sop){
251 336
    CV_Assert(L.rows == I.rows);
252 337
    CV_Assert(L.cols == I.cols);
253 338
    CV_Assert(L.channels() == 1 && I.channels() == 1);
......
261 346
    if(lDepth == CV_8U){
262 347
        if(iDepth == CV_8U || iDepth == CV_8S){
263 348
            if(connectivity == 4){
264
                return (uint64_t) LabelingImpl<uint8_t, uint8_t, 4>()(L, I);
349
                return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 4>()(L, I, sop);
265 350
            }else{
266
                return (uint64_t) LabelingImpl<uint8_t, uint8_t, 8>()(L, I);
351
                return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 8>()(L, I, sop);
267 352
            }
268 353
        }else if(iDepth == CV_16U || iDepth == CV_16S){
269 354
            if(connectivity == 4){
270
                return (uint64_t) LabelingImpl<uint8_t, uint16_t, 4>()(L, I);
355
                return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 4>()(L, I, sop);
271 356
            }else{
272
                return (uint64_t) LabelingImpl<uint8_t, uint16_t, 8>()(L, I);
357
                return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 8>()(L, I, sop);
273 358
            }
274 359
        }else if(iDepth == CV_32S){
275 360
            if(connectivity == 4){
276
                return (uint64_t) LabelingImpl<uint8_t, int32_t, 4>()(L, I);
361
                return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 4>()(L, I, sop);
277 362
            }else{
278
                return (uint64_t) LabelingImpl<uint8_t, int32_t, 8>()(L, I);
363
                return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 8>()(L, I, sop);
279 364
            }
280 365
        }else if(iDepth == CV_32F){
281 366
            if(connectivity == 4){
282
                return (uint64_t) LabelingImpl<uint8_t, float, 4>()(L, I);
367
                return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 4>()(L, I, sop);
283 368
            }else{
284
                return (uint64_t) LabelingImpl<uint8_t, float, 8>()(L, I);
369
                return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 8>()(L, I, sop);
285 370
            }
286 371
        }else if(iDepth == CV_64F){
287 372
            if(connectivity == 4){
288
                return (uint64_t) LabelingImpl<uint8_t, double, 4>()(L, I);
373
                return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 4>()(L, I, sop);
289 374
            }else{
290
                return (uint64_t) LabelingImpl<uint8_t, double, 8>()(L, I);
375
                return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 8>()(L, I, sop);
291 376
            }
292 377
        }
293 378
    }else if(lDepth == CV_16U){
294 379
        if(iDepth == CV_8U || iDepth == CV_8S){
295 380
            if(connectivity == 4){
296
                return (uint64_t) LabelingImpl<uint16_t, uint8_t, 4>()(L, I);
381
                return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 4>()(L, I, sop);
297 382
            }else{
298
                return (uint64_t) LabelingImpl<uint16_t, uint8_t, 8>()(L, I);
383
                return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 8>()(L, I, sop);
299 384
            }
300 385
        }else if(iDepth == CV_16U || iDepth == CV_16S){
301 386
            if(connectivity == 4){
302
                return (uint64_t) LabelingImpl<uint16_t, uint16_t, 4>()(L, I);
387
                return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 4>()(L, I, sop);
303 388
            }else{
304
                return (uint64_t) LabelingImpl<uint16_t, uint16_t, 8>()(L, I);
389
                return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 8>()(L, I, sop);
305 390
            }
306 391
        }else if(iDepth == CV_32S){
307 392
            if(connectivity == 4){
308
                return (uint64_t) LabelingImpl<uint16_t, int32_t, 4>()(L, I);
393
                return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 4>()(L, I, sop);
309 394
            }else{
310
                return (uint64_t) LabelingImpl<uint16_t, int32_t, 8>()(L, I);
395
                return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 8>()(L, I, sop);
311 396
            }
312 397
        }else if(iDepth == CV_32F){
313 398
            if(connectivity == 4){
314
                return (uint64_t) LabelingImpl<uint16_t, float, 4>()(L, I);
399
                return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 4>()(L, I, sop);
315 400
            }else{
316
                return (uint64_t) LabelingImpl<uint16_t, float, 8>()(L, I);
401
                return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 8>()(L, I, sop);
317 402
            }
318 403
        }else if(iDepth == CV_64F){
319 404
            if(connectivity == 4){
320
                return (uint64_t) LabelingImpl<uint16_t, double, 4>()(L, I);
405
                return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 4>()(L, I, sop);
321 406
            }else{
322
                return (uint64_t) LabelingImpl<uint16_t, double, 8>()(L, I);
407
                return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 8>()(L, I, sop);
323 408
            }
324 409
        }
325 410
    }else if(lDepth == CV_32S){
411
        //note that signed types don't really make sense here and not being able to use uint32_t matters for scientific projects
412
        //OpenCV: how should we proceed?  .at<T> typechecks in debug mode
326 413
        if(iDepth == CV_8U || iDepth == CV_8S){
327 414
            if(connectivity == 4){
328
                return (uint64_t) LabelingImpl<int32_t, uint8_t, 4>()(L, I);
415
                return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 4>()(L, I, sop);
329 416
            }else{
330
                return (uint64_t) LabelingImpl<int32_t, uint8_t, 8>()(L, I);
417
                return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 8>()(L, I, sop);
331 418
            }
332 419
        }else if(iDepth == CV_16U || iDepth == CV_16S){
333 420
            if(connectivity == 4){
334
                return (uint64_t) LabelingImpl<int32_t, uint16_t, 4>()(L, I);
421
                return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 4>()(L, I, sop);
335 422
            }else{
336
                return (uint64_t) LabelingImpl<int32_t, uint16_t, 8>()(L, I);
423
                return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 8>()(L, I, sop);
337 424
            }
338 425
        }else if(iDepth == CV_32S){
339 426
            if(connectivity == 4){
340
                return (uint64_t) LabelingImpl<int32_t, int32_t, 4>()(L, I);
427
                return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 4>()(L, I, sop);
341 428
            }else{
342
                return (uint64_t) LabelingImpl<int32_t, int32_t, 8>()(L, I);
429
                return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 8>()(L, I, sop);
343 430
            }
344 431
        }else if(iDepth == CV_32F){
345 432
            if(connectivity == 4){
346
                return (uint64_t) LabelingImpl<int32_t, float, 4>()(L, I);
433
                return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 4>()(L, I, sop);
347 434
            }else{
348
                return (uint64_t) LabelingImpl<int32_t, float, 8>()(L, I);
435
                return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 8>()(L, I, sop);
349 436
            }
350 437
        }else if(iDepth == CV_64F){
351 438
            if(connectivity == 4){
352
                return (uint64_t) LabelingImpl<int32_t, double, 4>()(L, I);
439
                return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 4>()(L, I, sop);
353 440
            }else{
354
                return (uint64_t) LabelingImpl<int32_t, double, 8>()(L, I);
441
                return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 8>()(L, I, sop);
355 442
            }
443
        }else{
444
            CV_Assert(false);
356 445
        }
357 446
    }
358 447

  
......
360 449
    return -1;
361 450
}
362 451

  
452
uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
453
    int lDepth = L.depth();
454
    if(lDepth == CV_8U){
455
        connectedcomponents::NoOp<uint8_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
456
    }else if(lDepth == CV_16U){
457
        connectedcomponents::NoOp<uint16_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
458
    }else if(lDepth == CV_32S){
459
        connectedcomponents::NoOp<uint32_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
460
    }else{
461
        CV_Assert(false);
462
        return 0;
463
    }
464
}
465

  
466
uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity){
467
    int lDepth = L.depth();
468
    if(lDepth == CV_8U){
469
        connectedcomponents::CCStatsOp<uint8_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
470
    }else if(lDepth == CV_16U){
471
        connectedcomponents::CCStatsOp<uint16_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
472
    }else if(lDepth == CV_32S){
473
        connectedcomponents::CCStatsOp<uint32_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
474
    }else{
475
        CV_Assert(false);
476
        return 0;
477
    }
478
}
363 479

  
364 480
}
365 481

  
b/samples/cpp/connected_components.cpp
12 12
{
13 13
    Mat bw = threshval < 128 ? (img < threshval) : (img > threshval);
14 14
    Mat labelImage(img.size(), CV_32S);
15
    int nLabels = connectedComponents(labelImage, bw, 8);
15
    uint64_t nLabels = connectedComponents(labelImage, bw, 8);
16 16
    Vec3b colors[nLabels];
17 17
    colors[0] = Vec3b(0, 0, 0);//background
18 18
    for(int label = 1; label < nLabels; ++label){
19
-