/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CORE_OPERATIONS_HPP__ #define __OPENCV_CORE_OPERATIONS_HPP__ #ifndef SKIP_INCLUDES #include #include #endif // SKIP_INCLUDES #ifdef __cplusplus /////// exchange-add operation for atomic operations on reference counters /////// #if defined __INTEL_COMPILER && !(defined WIN32 || defined _WIN32) // atomic increment on the linux version of the Intel(tm) compiler #define CV_XADD(addr,delta) _InterlockedExchangeAdd(const_cast(reinterpret_cast(addr)), delta) #elif defined __GNUC__ #if __GNUC__*10 + __GNUC_MINOR__ >= 42 #if !defined WIN32 && (defined __i486__ || defined __i586__ || \ defined __i686__ || defined __MMX__ || defined __SSE__ || defined __ppc__) #define CV_XADD __sync_fetch_and_add #else #include #define CV_XADD __gnu_cxx::__exchange_and_add #endif #else #include #if __GNUC__*10 + __GNUC_MINOR__ >= 34 #define CV_XADD __gnu_cxx::__exchange_and_add #else #define CV_XADD __exchange_and_add #endif #endif #elif defined WIN32 || defined _WIN32 #define WIN32_MEAN_AND_LEAN #ifndef _WIN32_WINNT // This is needed for the declaration of TryEnterCriticalSection in winbase.h with Visual Studio 2005 (and older?) #define _WIN32_WINNT 0x0400 // http://msdn.microsoft.com/en-us/library/ms686857(VS.85).aspx #endif #include #undef min #undef max #undef abs #define CV_XADD(addr,delta) InterlockedExchangeAdd((long volatile*)(addr), (delta)) #else static inline int CV_XADD(int* addr, int delta) { int tmp = *addr; *addr += delta; return tmp; } #endif #include namespace cv { using std::cos; using std::sin; using std::max; using std::min; using std::exp; using std::log; using std::pow; using std::sqrt; /////////////// saturate_cast (used in image & signal processing) /////////////////// template static inline _Tp saturate_cast(uchar v) { return _Tp(v); } template static inline _Tp saturate_cast(schar v) { return _Tp(v); } template static inline _Tp saturate_cast(ushort v) { return _Tp(v); } template static inline _Tp saturate_cast(short v) { return _Tp(v); } template static inline _Tp saturate_cast(unsigned v) { return _Tp(v); } template static inline _Tp saturate_cast(int v) { return _Tp(v); } template static inline _Tp saturate_cast(float v) { return _Tp(v); } template static inline _Tp saturate_cast(double v) { return _Tp(v); } template<> inline uchar saturate_cast(schar v) { return (uchar)std::max((int)v, 0); } template<> inline uchar saturate_cast(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); } template<> inline uchar saturate_cast(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); } template<> inline uchar saturate_cast(short v) { return saturate_cast((int)v); } template<> inline uchar saturate_cast(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); } template<> inline uchar saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline uchar saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline schar saturate_cast(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); } template<> inline schar saturate_cast(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); } template<> inline schar saturate_cast(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); } template<> inline schar saturate_cast(short v) { return saturate_cast((int)v); } template<> inline schar saturate_cast(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); } template<> inline schar saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline schar saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline ushort saturate_cast(schar v) { return (ushort)std::max((int)v, 0); } template<> inline ushort saturate_cast(short v) { return (ushort)std::max((int)v, 0); } template<> inline ushort saturate_cast(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); } template<> inline ushort saturate_cast(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); } template<> inline ushort saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline ushort saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline short saturate_cast(ushort v) { return (short)std::min((int)v, SHRT_MAX); } template<> inline short saturate_cast(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); } template<> inline short saturate_cast(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); } template<> inline short saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline short saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline int saturate_cast(float v) { return cvRound(v); } template<> inline int saturate_cast(double v) { return cvRound(v); } // we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc. template<> inline unsigned saturate_cast(float v){ return cvRound(v); } template<> inline unsigned saturate_cast(double v) { return cvRound(v); } inline int fast_abs(uchar v) { return v; } inline int fast_abs(schar v) { return std::abs((int)v); } inline int fast_abs(ushort v) { return v; } inline int fast_abs(short v) { return std::abs((int)v); } inline int fast_abs(int v) { return std::abs(v); } inline float fast_abs(float v) { return std::abs(v); } inline double fast_abs(double v) { return std::abs(v); } //////////////////////////////// Matx ///////////////////////////////// template inline Matx<_Tp, m, n>::Matx() { for(int i = 0; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0) { val[0] = v0; for(int i = 1; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1) { assert(channels >= 2); val[0] = v0; val[1] = v1; for(int i = 2; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2) { assert(channels >= 3); val[0] = v0; val[1] = v1; val[2] = v2; for(int i = 3; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3) { assert(channels >= 4); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; for(int i = 4; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4) { assert(channels >= 5); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; for(int i = 5; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5) { assert(channels >= 6); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; val[5] = v5; for(int i = 6; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6) { assert(channels >= 7); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; val[5] = v5; val[6] = v6; for(int i = 7; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7) { assert(channels >= 8); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; for(int i = 8; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8) { assert(channels >= 9); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; val[8] = v8; for(int i = 9; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9) { assert(channels >= 10); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; val[8] = v8; val[9] = v9; for(int i = 10; i < channels; i++) val[i] = _Tp(0); } template inline Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11) { assert(channels == 12); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; } template inline Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13, _Tp v14, _Tp v15) { assert(channels == 16); val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; val[12] = v12; val[13] = v13; val[14] = v14; val[15] = v15; } template inline Matx<_Tp, m, n>::Matx(const _Tp* values) { for( int i = 0; i < channels; i++ ) val[i] = values[i]; } template inline Matx<_Tp, m, n> Matx<_Tp, m, n>::all(_Tp alpha) { Matx<_Tp, m, n> M; for( int i = 0; i < m*n; i++ ) M.val[i] = alpha; return M; } template inline Matx<_Tp,m,n> Matx<_Tp,m,n>::zeros() { return all(0); } template inline Matx<_Tp,m,n> Matx<_Tp,m,n>::ones() { return all(1); } template inline Matx<_Tp,m,n> Matx<_Tp,m,n>::eye() { Matx<_Tp,m,n> M; for(int i = 0; i < MIN(m,n); i++) M(i,i) = 1; return M; } template inline _Tp Matx<_Tp, m, n>::dot(const Matx<_Tp, m, n>& M) const { _Tp s = 0; for( int i = 0; i < m*n; i++ ) s += val[i]*M.val[i]; return s; } template inline double Matx<_Tp, m, n>::ddot(const Matx<_Tp, m, n>& M) const { double s = 0; for( int i = 0; i < m*n; i++ ) s += (double)val[i]*M.val[i]; return s; } template inline Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d) { Matx<_Tp,m,n> M; for(int i = 0; i < MIN(m,n); i++) M(i,i) = d(i, 0); return M; } template inline Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b) { Matx<_Tp,m,n> M; Mat matM(M, false); cv::randu(matM, Scalar(a), Scalar(b)); return M; } template inline Matx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b) { Matx<_Tp,m,n> M; Mat matM(M, false); cv::randn(matM, Scalar(a), Scalar(b)); return M; } template template inline Matx<_Tp, m, n>::operator Matx() const { Matx M; for( int i = 0; i < m*n; i++ ) M.val[i] = saturate_cast(val[i]); return M; } template template inline Matx<_Tp, m1, n1> Matx<_Tp, m, n>::reshape() const { CV_DbgAssert(m1*n1 == m*n); return (const Matx<_Tp, m1, n1>&)*this; } template template inline Matx<_Tp, m1, n1> Matx<_Tp, m, n>::get_minor(int i, int j) const { CV_DbgAssert(0 <= i && i+m1 <= m && 0 <= j && j+n1 <= n); Matx<_Tp, m1, n1> s; for( int di = 0; di < m1; di++ ) for( int dj = 0; dj < n1; dj++ ) s(di, dj) = (*this)(i+di, j+dj); return s; } template inline Matx<_Tp, 1, n> Matx<_Tp, m, n>::row(int i) const { CV_DbgAssert((unsigned)i < (unsigned)m); return Matx<_Tp, 1, n>(&val[i*n]); } template inline Matx<_Tp, m, 1> Matx<_Tp, m, n>::col(int j) const { CV_DbgAssert((unsigned)j < (unsigned)n); Matx<_Tp, m, 1> v; for( int i = 0; i < m; i++ ) v.val[i] = val[i*n + j]; return v; } template inline typename Matx<_Tp, m, n>::diag_type Matx<_Tp, m, n>::diag() const { diag_type d; for( int i = 0; i < MIN(m, n); i++ ) d.val[i] = val[i*n + i]; return d; } template inline const _Tp& Matx<_Tp, m, n>::operator ()(int i, int j) const { CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n ); return this->val[i*n + j]; } template inline _Tp& Matx<_Tp, m, n>::operator ()(int i, int j) { CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n ); return val[i*n + j]; } template inline const _Tp& Matx<_Tp, m, n>::operator ()(int i) const { CV_DbgAssert( (m == 1 || n == 1) && (unsigned)i < (unsigned)(m+n-1) ); return val[i]; } template inline _Tp& Matx<_Tp, m, n>::operator ()(int i) { CV_DbgAssert( (m == 1 || n == 1) && (unsigned)i < (unsigned)(m+n-1) ); return val[i]; } template static inline Matx<_Tp1, m, n>& operator += (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b) { for( int i = 0; i < m*n; i++ ) a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]); return a; } template static inline Matx<_Tp1, m, n>& operator -= (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b) { for( int i = 0; i < m*n; i++ ) a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]); return a; } template inline Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp) { for( int i = 0; i < m*n; i++ ) val[i] = saturate_cast<_Tp>(a.val[i] + b.val[i]); } template inline Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp) { for( int i = 0; i < m*n; i++ ) val[i] = saturate_cast<_Tp>(a.val[i] - b.val[i]); } template template inline Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp) { for( int i = 0; i < m*n; i++ ) val[i] = saturate_cast<_Tp>(a.val[i] * alpha); } template inline Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp) { for( int i = 0; i < m*n; i++ ) val[i] = saturate_cast<_Tp>(a.val[i] * b.val[i]); } template template inline Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp) { for( int i = 0; i < m; i++ ) for( int j = 0; j < n; j++ ) { _Tp s = 0; for( int k = 0; k < l; k++ ) s += a(i, k) * b(k, j); val[i*n + j] = s; } } template inline Matx<_Tp,m,n>::Matx(const Matx<_Tp, n, m>& a, Matx_TOp) { for( int i = 0; i < m; i++ ) for( int j = 0; j < n; j++ ) val[i*n + j] = a(j, i); } template static inline Matx<_Tp, m, n> operator + (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) { return Matx<_Tp, m, n>(a, b, Matx_AddOp()); } template static inline Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) { return Matx<_Tp, m, n>(a, b, Matx_SubOp()); } template static inline Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, int alpha) { for( int i = 0; i < m*n; i++ ) a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); return a; } template static inline Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, float alpha) { for( int i = 0; i < m*n; i++ ) a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); return a; } template static inline Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, double alpha) { for( int i = 0; i < m*n; i++ ) a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); return a; } template static inline Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, int alpha) { return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); } template static inline Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, float alpha) { return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); } template static inline Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, double alpha) { return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); } template static inline Matx<_Tp, m, n> operator * (int alpha, const Matx<_Tp, m, n>& a) { return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); } template static inline Matx<_Tp, m, n> operator * (float alpha, const Matx<_Tp, m, n>& a) { return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); } template static inline Matx<_Tp, m, n> operator * (double alpha, const Matx<_Tp, m, n>& a) { return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); } template static inline Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a) { return Matx<_Tp, m, n>(a, -1, Matx_ScaleOp()); } template static inline Matx<_Tp, m, n> operator * (const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b) { return Matx<_Tp, m, n>(a, b, Matx_MatMulOp()); } template static inline Vec<_Tp, m> operator * (const Matx<_Tp, m, n>& a, const Vec<_Tp, n>& b) { Matx<_Tp, m, 1> c(a, b, Matx_MatMulOp()); return reinterpret_cast&>(c); } template static inline Point_<_Tp> operator * (const Matx<_Tp, 2, 2>& a, const Point_<_Tp>& b) { Matx<_Tp, 2, 1> tmp = a*Vec<_Tp,2>(b.x, b.y); return Point_<_Tp>(tmp.val[0], tmp.val[1]); } template static inline Point3_<_Tp> operator * (const Matx<_Tp, 3, 3>& a, const Point3_<_Tp>& b) { Matx<_Tp, 3, 1> tmp = a*Vec<_Tp,3>(b.x, b.y, b.z); return Point3_<_Tp>(tmp.val[0], tmp.val[1], tmp.val[2]); } template static inline Point3_<_Tp> operator * (const Matx<_Tp, 3, 3>& a, const Point_<_Tp>& b) { Matx<_Tp, 3, 1> tmp = a*Vec<_Tp,3>(b.x, b.y, 1); return Point3_<_Tp>(tmp.val[0], tmp.val[1], tmp.val[2]); } template static inline Matx<_Tp, 4, 1> operator * (const Matx<_Tp, 4, 4>& a, const Point3_<_Tp>& b) { return a*Matx<_Tp, 4, 1>(b.x, b.y, b.z, 1); } template static inline Scalar operator * (const Matx<_Tp, 4, 4>& a, const Scalar& b) { Matx c(Matx(a), b, Matx_MatMulOp()); return reinterpret_cast(c); } static inline Scalar operator * (const Matx& a, const Scalar& b) { Matx c(a, b, Matx_MatMulOp()); return reinterpret_cast(c); } template inline Matx<_Tp, m, n> Matx<_Tp, m, n>::mul(const Matx<_Tp, m, n>& a) const { return Matx<_Tp, m, n>(*this, a, Matx_MulOp()); } CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n); CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n); CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n); CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n); template struct CV_EXPORTS Matx_DetOp { double operator ()(const Matx<_Tp, m, m>& a) const { Matx<_Tp, m, m> temp = a; double p = LU(temp.val, m, m, 0, 0, 0); if( p == 0 ) return p; for( int i = 0; i < m; i++ ) p *= temp(i, i); return p; } }; template struct CV_EXPORTS Matx_DetOp<_Tp, 1> { double operator ()(const Matx<_Tp, 1, 1>& a) const { return a(0,0); } }; template struct CV_EXPORTS Matx_DetOp<_Tp, 2> { double operator ()(const Matx<_Tp, 2, 2>& a) const { return a(0,0)*a(1,1) - a(0,1)*a(1,0); } }; template struct CV_EXPORTS Matx_DetOp<_Tp, 3> { double operator ()(const Matx<_Tp, 3, 3>& a) const { return a(0,0)*(a(1,1)*a(2,2) - a(2,1)*a(1,2)) - a(0,1)*(a(1,0)*a(2,2) - a(2,0)*a(1,2)) + a(0,2)*(a(1,0)*a(2,1) - a(2,0)*a(1,1)); } }; template static inline double determinant(const Matx<_Tp, m, m>& a) { return Matx_DetOp<_Tp, m>()(a); } template static inline double trace(const Matx<_Tp, m, n>& a) { _Tp s = 0; for( int i = 0; i < std::min(m, n); i++ ) s += a(i,i); return s; } template inline Matx<_Tp, n, m> Matx<_Tp, m, n>::t() const { return Matx<_Tp, n, m>(*this, Matx_TOp()); } template struct CV_EXPORTS Matx_FastInvOp { bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const { Matx<_Tp, m, m> temp = a; // assume that b is all 0's on input => make it a unity matrix for( int i = 0; i < m; i++ ) b(i, i) = (_Tp)1; if( method == DECOMP_CHOLESKY ) return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m); return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0; } }; template struct CV_EXPORTS Matx_FastInvOp<_Tp, 2> { bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const { _Tp d = determinant(a); if( d == 0 ) return false; d = 1/d; b(1,1) = a(0,0)*d; b(0,0) = a(1,1)*d; b(0,1) = -a(0,1)*d; b(1,0) = -a(1,0)*d; return true; } }; template struct CV_EXPORTS Matx_FastInvOp<_Tp, 3> { bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int) const { _Tp d = (_Tp)determinant(a); if( d == 0 ) return false; d = 1/d; b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d; b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d; b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d; b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d; b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d; b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d; b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d; b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d; b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d; return true; } }; template inline Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method) const { Matx<_Tp, n, m> b; bool ok; if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) ok = Matx_FastInvOp<_Tp, m>()(*this, b, method); else { Mat A(*this, false), B(b, false); ok = (invert(A, B, method) != 0); } return ok ? b : Matx<_Tp, n, m>::zeros(); } template struct CV_EXPORTS Matx_FastSolveOp { bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b, Matx<_Tp, m, n>& x, int method) const { Matx<_Tp, m, m> temp = a; x = b; if( method == DECOMP_CHOLESKY ) return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n); return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0; } }; template struct CV_EXPORTS Matx_FastSolveOp<_Tp, 2, 1> { bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b, Matx<_Tp, 2, 1>& x, int method) const { _Tp d = determinant(a); if( d == 0 ) return false; d = 1/d; x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d; x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d; return true; } }; template struct CV_EXPORTS Matx_FastSolveOp<_Tp, 3, 1> { bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b, Matx<_Tp, 3, 1>& x, int) const { _Tp d = (_Tp)determinant(a); if( d == 0 ) return false; d = 1/d; x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) - a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) + a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2))); x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) - b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) + a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0))); x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) - a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) + b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0))); return true; } }; template template inline Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const { Matx<_Tp, n, l> x; bool ok; if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) ok = Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method); else { Mat A(*this, false), B(rhs, false), X(x, false); ok = cv::solve(A, B, X, method); } return ok ? x : Matx<_Tp, n, l>::zeros(); } template inline Vec<_Tp, n> Matx<_Tp, m, n>::solve(const Vec<_Tp, m>& rhs, int method) const { Matx<_Tp, n, 1> x = solve(reinterpret_cast&>(rhs), method); return reinterpret_cast&>(x); } template static inline _AccTp normL2Sqr(const _Tp* a, int n) { _AccTp s = 0; int i=0; #if CV_ENABLE_UNROLLED for( ; i <= n - 4; i += 4 ) { _AccTp v0 = a[i], v1 = a[i+1], v2 = a[i+2], v3 = a[i+3]; s += v0*v0 + v1*v1 + v2*v2 + v3*v3; } #endif for( ; i < n; i++ ) { _AccTp v = a[i]; s += v*v; } return s; } template static inline _AccTp normL1(const _Tp* a, int n) { _AccTp s = 0; int i = 0; #if CV_ENABLE_UNROLLED for(; i <= n - 4; i += 4 ) { s += (_AccTp)fast_abs(a[i]) + (_AccTp)fast_abs(a[i+1]) + (_AccTp)fast_abs(a[i+2]) + (_AccTp)fast_abs(a[i+3]); } #endif for( ; i < n; i++ ) s += fast_abs(a[i]); return s; } template static inline _AccTp normInf(const _Tp* a, int n) { _AccTp s = 0; for( int i = 0; i < n; i++ ) s = std::max(s, (_AccTp)fast_abs(a[i])); return s; } template static inline _AccTp normL2Sqr(const _Tp* a, const _Tp* b, int n) { _AccTp s = 0; int i= 0; #if CV_ENABLE_UNROLLED for(; i <= n - 4; i += 4 ) { _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]); s += v0*v0 + v1*v1 + v2*v2 + v3*v3; } #endif for( ; i < n; i++ ) { _AccTp v = _AccTp(a[i] - b[i]); s += v*v; } return s; } CV_EXPORTS float normL2Sqr_(const float* a, const float* b, int n); CV_EXPORTS float normL1_(const float* a, const float* b, int n); CV_EXPORTS int normL1_(const uchar* a, const uchar* b, int n); CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n); CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n, int cellSize); template<> inline float normL2Sqr(const float* a, const float* b, int n) { if( n >= 8 ) return normL2Sqr_(a, b, n); float s = 0; for( int i = 0; i < n; i++ ) { float v = a[i] - b[i]; s += v*v; } return s; } template static inline _AccTp normL1(const _Tp* a, const _Tp* b, int n) { _AccTp s = 0; int i= 0; #if CV_ENABLE_UNROLLED for(; i <= n - 4; i += 4 ) { _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]); s += std::abs(v0) + std::abs(v1) + std::abs(v2) + std::abs(v3); } #endif for( ; i < n; i++ ) { _AccTp v = _AccTp(a[i] - b[i]); s += std::abs(v); } return s; } template<> inline float normL1(const float* a, const float* b, int n) { if( n >= 8 ) return normL1_(a, b, n); float s = 0; for( int i = 0; i < n; i++ ) { float v = a[i] - b[i]; s += std::abs(v); } return s; } template<> inline int normL1(const uchar* a, const uchar* b, int n) { return normL1_(a, b, n); } template static inline _AccTp normInf(const _Tp* a, const _Tp* b, int n) { _AccTp s = 0; for( int i = 0; i < n; i++ ) { _AccTp v0 = a[i] - b[i]; s = std::max(s, std::abs(v0)); } return s; } template static inline double norm(const Matx<_Tp, m, n>& M) { return std::sqrt(normL2Sqr<_Tp, double>(M.val, m*n)); } template static inline double norm(const Matx<_Tp, m, n>& M, int normType) { return normType == NORM_INF ? (double)normInf<_Tp, DataType<_Tp>::work_type>(M.val, m*n) : normType == NORM_L1 ? (double)normL1<_Tp, DataType<_Tp>::work_type>(M.val, m*n) : std::sqrt((double)normL2Sqr<_Tp, DataType<_Tp>::work_type>(M.val, m*n)); } template static inline bool operator == (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) { for( int i = 0; i < m*n; i++ ) if( a.val[i] != b.val[i] ) return false; return true; } template static inline bool operator != (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) { return !(a == b); } template static inline MatxCommaInitializer<_Tp, m, n> operator << (const Matx<_Tp, m, n>& mtx, _T2 val) { MatxCommaInitializer<_Tp, m, n> commaInitializer((Matx<_Tp, m, n>*)&mtx); return (commaInitializer, val); } template inline MatxCommaInitializer<_Tp, m, n>::MatxCommaInitializer(Matx<_Tp, m, n>* _mtx) : dst(_mtx), idx(0) {} template template inline MatxCommaInitializer<_Tp, m, n>& MatxCommaInitializer<_Tp, m, n>::operator , (_T2 value) { CV_DbgAssert( idx < m*n ); dst->val[idx++] = saturate_cast<_Tp>(value); return *this; } template inline Matx<_Tp, m, n> MatxCommaInitializer<_Tp, m, n>::operator *() const { CV_DbgAssert( idx == n*m ); return *dst; } /////////////////////////// short vector (Vec) ///////////////////////////// template inline Vec<_Tp, cn>::Vec() {} template inline Vec<_Tp, cn>::Vec(_Tp v0) : Matx<_Tp, cn, 1>(v0) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1) : Matx<_Tp, cn, 1>(v0, v1) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2) : Matx<_Tp, cn, 1>(v0, v1, v2) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3) : Matx<_Tp, cn, 1>(v0, v1, v2, v3) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4) : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5) : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6) : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7) : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8) : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8) {} template inline Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9) : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9) {} template inline Vec<_Tp, cn>::Vec(const _Tp* values) : Matx<_Tp, cn, 1>(values) {} template inline Vec<_Tp, cn>::Vec(const Vec<_Tp, cn>& m) : Matx<_Tp, cn, 1>(m.val) {} template inline Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp op) : Matx<_Tp, cn, 1>(a, b, op) {} template inline Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp op) : Matx<_Tp, cn, 1>(a, b, op) {} template template inline Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp op) : Matx<_Tp, cn, 1>(a, alpha, op) {} template inline Vec<_Tp, cn> Vec<_Tp, cn>::all(_Tp alpha) { Vec v; for( int i = 0; i < cn; i++ ) v.val[i] = alpha; return v; } template inline Vec<_Tp, cn> Vec<_Tp, cn>::mul(const Vec<_Tp, cn>& v) const { Vec<_Tp, cn> w; for( int i = 0; i < cn; i++ ) w.val[i] = saturate_cast<_Tp>(this->val[i]*v.val[i]); return w; } template Vec<_Tp, 2> conjugate(const Vec<_Tp, 2>& v) { return Vec<_Tp, 2>(v[0], -v[1]); } template Vec<_Tp, 4> conjugate(const Vec<_Tp, 4>& v) { return Vec<_Tp, 4>(v[0], -v[1], -v[2], -v[3]); } template<> inline Vec Vec::conj() const { return conjugate(*this); } template<> inline Vec Vec::conj() const { return conjugate(*this); } template<> inline Vec Vec::conj() const { return conjugate(*this); } template<> inline Vec Vec::conj() const { return conjugate(*this); } template inline Vec<_Tp, cn> Vec<_Tp, cn>::cross(const Vec<_Tp, cn>& v) const { CV_Error(CV_StsError, "for arbitrary-size vector there is no cross-product defined"); return Vec<_Tp, cn>(); } template template inline Vec<_Tp, cn>::operator Vec() const { Vec v; for( int i = 0; i < cn; i++ ) v.val[i] = saturate_cast(this->val[i]); return v; } template inline Vec<_Tp, cn>::operator CvScalar() const { CvScalar s = {{0,0,0,0}}; int i; for( i = 0; i < std::min(cn, 4); i++ ) s.val[i] = this->val[i]; for( ; i < 4; i++ ) s.val[i] = 0; return s; } template inline const _Tp& Vec<_Tp, cn>::operator [](int i) const { CV_DbgAssert( (unsigned)i < (unsigned)cn ); return this->val[i]; } template inline _Tp& Vec<_Tp, cn>::operator [](int i) { CV_DbgAssert( (unsigned)i < (unsigned)cn ); return this->val[i]; } template inline const _Tp& Vec<_Tp, cn>::operator ()(int i) const { CV_DbgAssert( (unsigned)i < (unsigned)cn ); return this->val[i]; } template inline _Tp& Vec<_Tp, cn>::operator ()(int i) { CV_DbgAssert( (unsigned)i < (unsigned)cn ); return this->val[i]; } template static inline Vec<_Tp1, cn>& operator += (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b) { for( int i = 0; i < cn; i++ ) a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]); return a; } template static inline Vec<_Tp1, cn>& operator -= (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b) { for( int i = 0; i < cn; i++ ) a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]); return a; } template static inline Vec<_Tp, cn> operator + (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b) { return Vec<_Tp, cn>(a, b, Matx_AddOp()); } template static inline Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b) { return Vec<_Tp, cn>(a, b, Matx_SubOp()); } template static inline Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, int alpha) { for( int i = 0; i < cn; i++ ) a[i] = saturate_cast<_Tp>(a[i]*alpha); return a; } template static inline Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, float alpha) { for( int i = 0; i < cn; i++ ) a[i] = saturate_cast<_Tp>(a[i]*alpha); return a; } template static inline Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, double alpha) { for( int i = 0; i < cn; i++ ) a[i] = saturate_cast<_Tp>(a[i]*alpha); return a; } template static inline Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, int alpha) { double ialpha = 1./alpha; for( int i = 0; i < cn; i++ ) a[i] = saturate_cast<_Tp>(a[i]*ialpha); return a; } template static inline Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, float alpha) { float ialpha = 1.f/alpha; for( int i = 0; i < cn; i++ ) a[i] = saturate_cast<_Tp>(a[i]*ialpha); return a; } template static inline Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, double alpha) { double ialpha = 1./alpha; for( int i = 0; i < cn; i++ ) a[i] = saturate_cast<_Tp>(a[i]*ialpha); return a; } template static inline Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, int alpha) { return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator * (int alpha, const Vec<_Tp, cn>& a) { return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, float alpha) { return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator * (float alpha, const Vec<_Tp, cn>& a) { return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, double alpha) { return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator * (double alpha, const Vec<_Tp, cn>& a) { return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, int alpha) { return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, float alpha) { return Vec<_Tp, cn>(a, 1.f/alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, double alpha) { return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp()); } template static inline Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a) { Vec<_Tp,cn> t; for( int i = 0; i < cn; i++ ) t.val[i] = saturate_cast<_Tp>(-a.val[i]); return t; } template inline Vec<_Tp, 4> operator * (const Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2) { return Vec<_Tp, 4>(saturate_cast<_Tp>(v1[0]*v2[0] - v1[1]*v2[1] - v1[2]*v2[2] - v1[3]*v2[3]), saturate_cast<_Tp>(v1[0]*v2[1] + v1[1]*v2[0] + v1[2]*v2[3] - v1[3]*v2[2]), saturate_cast<_Tp>(v1[0]*v2[2] - v1[1]*v2[3] + v1[2]*v2[0] + v1[3]*v2[1]), saturate_cast<_Tp>(v1[0]*v2[3] + v1[1]*v2[2] - v1[2]*v2[1] + v1[3]*v2[0])); } template inline Vec<_Tp, 4>& operator *= (Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2) { v1 = v1 * v2; return v1; } template<> inline Vec Vec::cross(const Vec& v) const { return Vec(val[1]*v.val[2] - val[2]*v.val[1], val[2]*v.val[0] - val[0]*v.val[2], val[0]*v.val[1] - val[1]*v.val[0]); } template<> inline Vec Vec::cross(const Vec& v) const { return Vec(val[1]*v.val[2] - val[2]*v.val[1], val[2]*v.val[0] - val[0]*v.val[2], val[0]*v.val[1] - val[1]*v.val[0]); } template inline Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v) { double nv = norm(v); return v * (nv ? 1./nv : 0.); } template static inline VecCommaInitializer<_Tp, cn> operator << (const Vec<_Tp, cn>& vec, _T2 val) { VecCommaInitializer<_Tp, cn> commaInitializer((Vec<_Tp, cn>*)&vec); return (commaInitializer, val); } template inline VecCommaInitializer<_Tp, cn>::VecCommaInitializer(Vec<_Tp, cn>* _vec) : MatxCommaInitializer<_Tp, cn, 1>(_vec) {} template template inline VecCommaInitializer<_Tp, cn>& VecCommaInitializer<_Tp, cn>::operator , (_T2 value) { CV_DbgAssert( this->idx < cn ); this->dst->val[this->idx++] = saturate_cast<_Tp>(value); return *this; } template inline Vec<_Tp, cn> VecCommaInitializer<_Tp, cn>::operator *() const { CV_DbgAssert( this->idx == cn ); return *this->dst; } //////////////////////////////// Complex ////////////////////////////// template inline Complex<_Tp>::Complex() : re(0), im(0) {} template inline Complex<_Tp>::Complex( _Tp _re, _Tp _im ) : re(_re), im(_im) {} template template inline Complex<_Tp>::operator Complex() const { return Complex(saturate_cast(re), saturate_cast(im)); } template inline Complex<_Tp> Complex<_Tp>::conj() const { return Complex<_Tp>(re, -im); } template static inline bool operator == (const Complex<_Tp>& a, const Complex<_Tp>& b) { return a.re == b.re && a.im == b.im; } template static inline bool operator != (const Complex<_Tp>& a, const Complex<_Tp>& b) { return a.re != b.re || a.im != b.im; } template static inline Complex<_Tp> operator + (const Complex<_Tp>& a, const Complex<_Tp>& b) { return Complex<_Tp>( a.re + b.re, a.im + b.im ); } template static inline Complex<_Tp>& operator += (Complex<_Tp>& a, const Complex<_Tp>& b) { a.re += b.re; a.im += b.im; return a; } template static inline Complex<_Tp> operator - (const Complex<_Tp>& a, const Complex<_Tp>& b) { return Complex<_Tp>( a.re - b.re, a.im - b.im ); } template static inline Complex<_Tp>& operator -= (Complex<_Tp>& a, const Complex<_Tp>& b) { a.re -= b.re; a.im -= b.im; return a; } template static inline Complex<_Tp> operator - (const Complex<_Tp>& a) { return Complex<_Tp>(-a.re, -a.im); } template static inline Complex<_Tp> operator * (const Complex<_Tp>& a, const Complex<_Tp>& b) { return Complex<_Tp>( a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re ); } template static inline Complex<_Tp> operator * (const Complex<_Tp>& a, _Tp b) { return Complex<_Tp>( a.re*b, a.im*b ); } template static inline Complex<_Tp> operator * (_Tp b, const Complex<_Tp>& a) { return Complex<_Tp>( a.re*b, a.im*b ); } template static inline Complex<_Tp> operator + (const Complex<_Tp>& a, _Tp b) { return Complex<_Tp>( a.re + b, a.im ); } template static inline Complex<_Tp> operator - (const Complex<_Tp>& a, _Tp b) { return Complex<_Tp>( a.re - b, a.im ); } template static inline Complex<_Tp> operator + (_Tp b, const Complex<_Tp>& a) { return Complex<_Tp>( a.re + b, a.im ); } template static inline Complex<_Tp> operator - (_Tp b, const Complex<_Tp>& a) { return Complex<_Tp>( b - a.re, -a.im ); } template static inline Complex<_Tp>& operator += (Complex<_Tp>& a, _Tp b) { a.re += b; return a; } template static inline Complex<_Tp>& operator -= (Complex<_Tp>& a, _Tp b) { a.re -= b; return a; } template static inline Complex<_Tp>& operator *= (Complex<_Tp>& a, _Tp b) { a.re *= b; a.im *= b; return a; } template static inline double abs(const Complex<_Tp>& a) { return std::sqrt( (double)a.re*a.re + (double)a.im*a.im); } template static inline Complex<_Tp> operator / (const Complex<_Tp>& a, const Complex<_Tp>& b) { double t = 1./((double)b.re*b.re + (double)b.im*b.im); return Complex<_Tp>( (_Tp)((a.re*b.re + a.im*b.im)*t), (_Tp)((-a.re*b.im + a.im*b.re)*t) ); } template static inline Complex<_Tp>& operator /= (Complex<_Tp>& a, const Complex<_Tp>& b) { return (a = a / b); } template static inline Complex<_Tp> operator / (const Complex<_Tp>& a, _Tp b) { _Tp t = (_Tp)1/b; return Complex<_Tp>( a.re*t, a.im*t ); } template static inline Complex<_Tp> operator / (_Tp b, const Complex<_Tp>& a) { return Complex<_Tp>(b)/a; } template static inline Complex<_Tp> operator /= (const Complex<_Tp>& a, _Tp b) { _Tp t = (_Tp)1/b; a.re *= t; a.im *= t; return a; } //////////////////////////////// 2D Point //////////////////////////////// template inline Point_<_Tp>::Point_() : x(0), y(0) {} template inline Point_<_Tp>::Point_(_Tp _x, _Tp _y) : x(_x), y(_y) {} template inline Point_<_Tp>::Point_(const Point_& pt) : x(pt.x), y(pt.y) {} template inline Point_<_Tp>::Point_(const CvPoint& pt) : x((_Tp)pt.x), y((_Tp)pt.y) {} template inline Point_<_Tp>::Point_(const CvPoint2D32f& pt) : x(saturate_cast<_Tp>(pt.x)), y(saturate_cast<_Tp>(pt.y)) {} template inline Point_<_Tp>::Point_(const Size_<_Tp>& sz) : x(sz.width), y(sz.height) {} template inline Point_<_Tp>::Point_(const Vec<_Tp,2>& v) : x(v[0]), y(v[1]) {} template inline Point_<_Tp>& Point_<_Tp>::operator = (const Point_& pt) { x = pt.x; y = pt.y; return *this; } template template inline Point_<_Tp>::operator Point_<_Tp2>() const { return Point_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y)); } template inline Point_<_Tp>::operator CvPoint() const { return cvPoint(saturate_cast(x), saturate_cast(y)); } template inline Point_<_Tp>::operator CvPoint2D32f() const { return cvPoint2D32f((float)x, (float)y); } template inline Point_<_Tp>::operator Vec<_Tp, 2>() const { return Vec<_Tp, 2>(x, y); } template inline _Tp Point_<_Tp>::dot(const Point_& pt) const { return saturate_cast<_Tp>(x*pt.x + y*pt.y); } template inline double Point_<_Tp>::ddot(const Point_& pt) const { return (double)x*pt.x + (double)y*pt.y; } template inline double Point_<_Tp>::cross(const Point_& pt) const { return (double)x*pt.y - (double)y*pt.x; } template static inline Point_<_Tp>& operator += (Point_<_Tp>& a, const Point_<_Tp>& b) { a.x = saturate_cast<_Tp>(a.x + b.x); a.y = saturate_cast<_Tp>(a.y + b.y); return a; } template static inline Point_<_Tp>& operator -= (Point_<_Tp>& a, const Point_<_Tp>& b) { a.x = saturate_cast<_Tp>(a.x - b.x); a.y = saturate_cast<_Tp>(a.y - b.y); return a; } template static inline Point_<_Tp>& operator *= (Point_<_Tp>& a, int b) { a.x = saturate_cast<_Tp>(a.x*b); a.y = saturate_cast<_Tp>(a.y*b); return a; } template static inline Point_<_Tp>& operator *= (Point_<_Tp>& a, float b) { a.x = saturate_cast<_Tp>(a.x*b); a.y = saturate_cast<_Tp>(a.y*b); return a; } template static inline Point_<_Tp>& operator *= (Point_<_Tp>& a, double b) { a.x = saturate_cast<_Tp>(a.x*b); a.y = saturate_cast<_Tp>(a.y*b); return a; } template static inline double norm(const Point_<_Tp>& pt) { return std::sqrt((double)pt.x*pt.x + (double)pt.y*pt.y); } template static inline bool operator == (const Point_<_Tp>& a, const Point_<_Tp>& b) { return a.x == b.x && a.y == b.y; } template static inline bool operator != (const Point_<_Tp>& a, const Point_<_Tp>& b) { return a.x != b.x || a.y != b.y; } template static inline Point_<_Tp> operator + (const Point_<_Tp>& a, const Point_<_Tp>& b) { return Point_<_Tp>( saturate_cast<_Tp>(a.x + b.x), saturate_cast<_Tp>(a.y + b.y) ); } template static inline Point_<_Tp> operator - (const Point_<_Tp>& a, const Point_<_Tp>& b) { return Point_<_Tp>( saturate_cast<_Tp>(a.x - b.x), saturate_cast<_Tp>(a.y - b.y) ); } template static inline Point_<_Tp> operator - (const Point_<_Tp>& a) { return Point_<_Tp>( saturate_cast<_Tp>(-a.x), saturate_cast<_Tp>(-a.y) ); } template static inline Point_<_Tp> operator * (const Point_<_Tp>& a, int b) { return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); } template static inline Point_<_Tp> operator * (int a, const Point_<_Tp>& b) { return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); } template static inline Point_<_Tp> operator * (const Point_<_Tp>& a, float b) { return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); } template static inline Point_<_Tp> operator * (float a, const Point_<_Tp>& b) { return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); } template static inline Point_<_Tp> operator * (const Point_<_Tp>& a, double b) { return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); } template static inline Point_<_Tp> operator * (double a, const Point_<_Tp>& b) { return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); } //////////////////////////////// 3D Point //////////////////////////////// template inline Point3_<_Tp>::Point3_() : x(0), y(0), z(0) {} template inline Point3_<_Tp>::Point3_(_Tp _x, _Tp _y, _Tp _z) : x(_x), y(_y), z(_z) {} template inline Point3_<_Tp>::Point3_(const Point3_& pt) : x(pt.x), y(pt.y), z(pt.z) {} template inline Point3_<_Tp>::Point3_(const Point_<_Tp>& pt) : x(pt.x), y(pt.y), z(_Tp()) {} template inline Point3_<_Tp>::Point3_(const CvPoint3D32f& pt) : x(saturate_cast<_Tp>(pt.x)), y(saturate_cast<_Tp>(pt.y)), z(saturate_cast<_Tp>(pt.z)) {} template inline Point3_<_Tp>::Point3_(const Vec<_Tp, 3>& v) : x(v[0]), y(v[1]), z(v[2]) {} template template inline Point3_<_Tp>::operator Point3_<_Tp2>() const { return Point3_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y), saturate_cast<_Tp2>(z)); } template inline Point3_<_Tp>::operator CvPoint3D32f() const { return cvPoint3D32f((float)x, (float)y, (float)z); } template inline Point3_<_Tp>::operator Vec<_Tp, 3>() const { return Vec<_Tp, 3>(x, y, z); } template inline Point3_<_Tp>& Point3_<_Tp>::operator = (const Point3_& pt) { x = pt.x; y = pt.y; z = pt.z; return *this; } template inline _Tp Point3_<_Tp>::dot(const Point3_& pt) const { return saturate_cast<_Tp>(x*pt.x + y*pt.y + z*pt.z); } template inline double Point3_<_Tp>::ddot(const Point3_& pt) const { return (double)x*pt.x + (double)y*pt.y + (double)z*pt.z; } template inline Point3_<_Tp> Point3_<_Tp>::cross(const Point3_<_Tp>& pt) const { return Point3_<_Tp>(y*pt.z - z*pt.y, z*pt.x - x*pt.z, x*pt.y - y*pt.x); } template static inline Point3_<_Tp>& operator += (Point3_<_Tp>& a, const Point3_<_Tp>& b) { a.x = saturate_cast<_Tp>(a.x + b.x); a.y = saturate_cast<_Tp>(a.y + b.y); a.z = saturate_cast<_Tp>(a.z + b.z); return a; } template static inline Point3_<_Tp>& operator -= (Point3_<_Tp>& a, const Point3_<_Tp>& b) { a.x = saturate_cast<_Tp>(a.x - b.x); a.y = saturate_cast<_Tp>(a.y - b.y); a.z = saturate_cast<_Tp>(a.z - b.z); return a; } template static inline Point3_<_Tp>& operator *= (Point3_<_Tp>& a, int b) { a.x = saturate_cast<_Tp>(a.x*b); a.y = saturate_cast<_Tp>(a.y*b); a.z = saturate_cast<_Tp>(a.z*b); return a; } template static inline Point3_<_Tp>& operator *= (Point3_<_Tp>& a, float b) { a.x = saturate_cast<_Tp>(a.x*b); a.y = saturate_cast<_Tp>(a.y*b); a.z = saturate_cast<_Tp>(a.z*b); return a; } template static inline Point3_<_Tp>& operator *= (Point3_<_Tp>& a, double b) { a.x = saturate_cast<_Tp>(a.x*b); a.y = saturate_cast<_Tp>(a.y*b); a.z = saturate_cast<_Tp>(a.z*b); return a; } template static inline double norm(const Point3_<_Tp>& pt) { return std::sqrt((double)pt.x*pt.x + (double)pt.y*pt.y + (double)pt.z*pt.z); } template static inline bool operator == (const Point3_<_Tp>& a, const Point3_<_Tp>& b) { return a.x == b.x && a.y == b.y && a.z == b.z; } template static inline bool operator != (const Point3_<_Tp>& a, const Point3_<_Tp>& b) { return a.x != b.x || a.y != b.y || a.z != b.z; } template static inline Point3_<_Tp> operator + (const Point3_<_Tp>& a, const Point3_<_Tp>& b) { return Point3_<_Tp>( saturate_cast<_Tp>(a.x + b.x), saturate_cast<_Tp>(a.y + b.y), saturate_cast<_Tp>(a.z + b.z)); } template static inline Point3_<_Tp> operator - (const Point3_<_Tp>& a, const Point3_<_Tp>& b) { return Point3_<_Tp>( saturate_cast<_Tp>(a.x - b.x), saturate_cast<_Tp>(a.y - b.y), saturate_cast<_Tp>(a.z - b.z)); } template static inline Point3_<_Tp> operator - (const Point3_<_Tp>& a) { return Point3_<_Tp>( saturate_cast<_Tp>(-a.x), saturate_cast<_Tp>(-a.y), saturate_cast<_Tp>(-a.z) ); } template static inline Point3_<_Tp> operator * (const Point3_<_Tp>& a, int b) { return Point3_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b), saturate_cast<_Tp>(a.z*b) ); } template static inline Point3_<_Tp> operator * (int a, const Point3_<_Tp>& b) { return Point3_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a), saturate_cast<_Tp>(b.z*a) ); } template static inline Point3_<_Tp> operator * (const Point3_<_Tp>& a, float b) { return Point3_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b), saturate_cast<_Tp>(a.z*b) ); } template static inline Point3_<_Tp> operator * (float a, const Point3_<_Tp>& b) { return Point3_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a), saturate_cast<_Tp>(b.z*a) ); } template static inline Point3_<_Tp> operator * (const Point3_<_Tp>& a, double b) { return Point3_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b), saturate_cast<_Tp>(a.z*b) ); } template static inline Point3_<_Tp> operator * (double a, const Point3_<_Tp>& b) { return Point3_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a), saturate_cast<_Tp>(b.z*a) ); } //////////////////////////////// Size //////////////////////////////// template inline Size_<_Tp>::Size_() : width(0), height(0) {} template inline Size_<_Tp>::Size_(_Tp _width, _Tp _height) : width(_width), height(_height) {} template inline Size_<_Tp>::Size_(const Size_& sz) : width(sz.width), height(sz.height) {} template inline Size_<_Tp>::Size_(const CvSize& sz) : width(saturate_cast<_Tp>(sz.width)), height(saturate_cast<_Tp>(sz.height)) {} template inline Size_<_Tp>::Size_(const CvSize2D32f& sz) : width(saturate_cast<_Tp>(sz.width)), height(saturate_cast<_Tp>(sz.height)) {} template inline Size_<_Tp>::Size_(const Point_<_Tp>& pt) : width(pt.x), height(pt.y) {} template template inline Size_<_Tp>::operator Size_<_Tp2>() const { return Size_<_Tp2>(saturate_cast<_Tp2>(width), saturate_cast<_Tp2>(height)); } template inline Size_<_Tp>::operator CvSize() const { return cvSize(saturate_cast(width), saturate_cast(height)); } template inline Size_<_Tp>::operator CvSize2D32f() const { return cvSize2D32f((float)width, (float)height); } template inline Size_<_Tp>& Size_<_Tp>::operator = (const Size_<_Tp>& sz) { width = sz.width; height = sz.height; return *this; } template static inline Size_<_Tp> operator * (const Size_<_Tp>& a, _Tp b) { return Size_<_Tp>(a.width * b, a.height * b); } template static inline Size_<_Tp> operator + (const Size_<_Tp>& a, const Size_<_Tp>& b) { return Size_<_Tp>(a.width + b.width, a.height + b.height); } template static inline Size_<_Tp> operator - (const Size_<_Tp>& a, const Size_<_Tp>& b) { return Size_<_Tp>(a.width - b.width, a.height - b.height); } template inline _Tp Size_<_Tp>::area() const { return width*height; } template static inline Size_<_Tp>& operator += (Size_<_Tp>& a, const Size_<_Tp>& b) { a.width += b.width; a.height += b.height; return a; } template static inline Size_<_Tp>& operator -= (Size_<_Tp>& a, const Size_<_Tp>& b) { a.width -= b.width; a.height -= b.height; return a; } template static inline bool operator == (const Size_<_Tp>& a, const Size_<_Tp>& b) { return a.width == b.width && a.height == b.height; } template static inline bool operator != (const Size_<_Tp>& a, const Size_<_Tp>& b) { return a.width != b.width || a.height != b.height; } //////////////////////////////// Rect //////////////////////////////// template inline Rect_<_Tp>::Rect_() : x(0), y(0), width(0), height(0) {} template inline Rect_<_Tp>::Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height) : x(_x), y(_y), width(_width), height(_height) {} template inline Rect_<_Tp>::Rect_(const Rect_<_Tp>& r) : x(r.x), y(r.y), width(r.width), height(r.height) {} template inline Rect_<_Tp>::Rect_(const CvRect& r) : x((_Tp)r.x), y((_Tp)r.y), width((_Tp)r.width), height((_Tp)r.height) {} template inline Rect_<_Tp>::Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz) : x(org.x), y(org.y), width(sz.width), height(sz.height) {} template inline Rect_<_Tp>::Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2) { x = std::min(pt1.x, pt2.x); y = std::min(pt1.y, pt2.y); width = std::max(pt1.x, pt2.x) - x; height = std::max(pt1.y, pt2.y) - y; } template inline Rect_<_Tp>& Rect_<_Tp>::operator = ( const Rect_<_Tp>& r ) { x = r.x; y = r.y; width = r.width; height = r.height; return *this; } template inline Point_<_Tp> Rect_<_Tp>::tl() const { return Point_<_Tp>(x,y); } template inline Point_<_Tp> Rect_<_Tp>::br() const { return Point_<_Tp>(x+width, y+height); } template static inline Rect_<_Tp>& operator += ( Rect_<_Tp>& a, const Point_<_Tp>& b ) { a.x += b.x; a.y += b.y; return a; } template static inline Rect_<_Tp>& operator -= ( Rect_<_Tp>& a, const Point_<_Tp>& b ) { a.x -= b.x; a.y -= b.y; return a; } template static inline Rect_<_Tp>& operator += ( Rect_<_Tp>& a, const Size_<_Tp>& b ) { a.width += b.width; a.height += b.height; return a; } template static inline Rect_<_Tp>& operator -= ( Rect_<_Tp>& a, const Size_<_Tp>& b ) { a.width -= b.width; a.height -= b.height; return a; } template static inline Rect_<_Tp>& operator &= ( Rect_<_Tp>& a, const Rect_<_Tp>& b ) { _Tp x1 = std::max(a.x, b.x), y1 = std::max(a.y, b.y); a.width = std::min(a.x + a.width, b.x + b.width) - x1; a.height = std::min(a.y + a.height, b.y + b.height) - y1; a.x = x1; a.y = y1; if( a.width <= 0 || a.height <= 0 ) a = Rect(); return a; } template static inline Rect_<_Tp>& operator |= ( Rect_<_Tp>& a, const Rect_<_Tp>& b ) { _Tp x1 = std::min(a.x, b.x), y1 = std::min(a.y, b.y); a.width = std::max(a.x + a.width, b.x + b.width) - x1; a.height = std::max(a.y + a.height, b.y + b.height) - y1; a.x = x1; a.y = y1; return a; } template inline Size_<_Tp> Rect_<_Tp>::size() const { return Size_<_Tp>(width, height); } template inline _Tp Rect_<_Tp>::area() const { return width*height; } template template inline Rect_<_Tp>::operator Rect_<_Tp2>() const { return Rect_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y), saturate_cast<_Tp2>(width), saturate_cast<_Tp2>(height)); } template inline Rect_<_Tp>::operator CvRect() const { return cvRect(saturate_cast(x), saturate_cast(y), saturate_cast(width), saturate_cast(height)); } template inline bool Rect_<_Tp>::contains(const Point_<_Tp>& pt) const { return x <= pt.x && pt.x < x + width && y <= pt.y && pt.y < y + height; } template static inline bool operator == (const Rect_<_Tp>& a, const Rect_<_Tp>& b) { return a.x == b.x && a.y == b.y && a.width == b.width && a.height == b.height; } template static inline bool operator != (const Rect_<_Tp>& a, const Rect_<_Tp>& b) { return a.x != b.x || a.y != b.y || a.width != b.width || a.height != b.height; } template static inline Rect_<_Tp> operator + (const Rect_<_Tp>& a, const Point_<_Tp>& b) { return Rect_<_Tp>( a.x + b.x, a.y + b.y, a.width, a.height ); } template static inline Rect_<_Tp> operator - (const Rect_<_Tp>& a, const Point_<_Tp>& b) { return Rect_<_Tp>( a.x - b.x, a.y - b.y, a.width, a.height ); } template static inline Rect_<_Tp> operator + (const Rect_<_Tp>& a, const Size_<_Tp>& b) { return Rect_<_Tp>( a.x, a.y, a.width + b.width, a.height + b.height ); } template static inline Rect_<_Tp> operator & (const Rect_<_Tp>& a, const Rect_<_Tp>& b) { Rect_<_Tp> c = a; return c &= b; } template static inline Rect_<_Tp> operator | (const Rect_<_Tp>& a, const Rect_<_Tp>& b) { Rect_<_Tp> c = a; return c |= b; } template inline bool Point_<_Tp>::inside( const Rect_<_Tp>& r ) const { return r.contains(*this); } inline RotatedRect::RotatedRect() { angle = 0; } inline RotatedRect::RotatedRect(const Point2f& _center, const Size2f& _size, float _angle) : center(_center), size(_size), angle(_angle) {} inline RotatedRect::RotatedRect(const CvBox2D& box) : center(box.center), size(box.size), angle(box.angle) {} inline RotatedRect::operator CvBox2D() const { CvBox2D box; box.center = center; box.size = size; box.angle = angle; return box; } //////////////////////////////// Scalar_ /////////////////////////////// template inline Scalar_<_Tp>::Scalar_() { this->val[0] = this->val[1] = this->val[2] = this->val[3] = 0; } template inline Scalar_<_Tp>::Scalar_(_Tp v0, _Tp v1, _Tp v2, _Tp v3) { this->val[0] = v0; this->val[1] = v1; this->val[2] = v2; this->val[3] = v3; } template inline Scalar_<_Tp>::Scalar_(const CvScalar& s) { this->val[0] = saturate_cast<_Tp>(s.val[0]); this->val[1] = saturate_cast<_Tp>(s.val[1]); this->val[2] = saturate_cast<_Tp>(s.val[2]); this->val[3] = saturate_cast<_Tp>(s.val[3]); } template inline Scalar_<_Tp>::Scalar_(_Tp v0) { this->val[0] = v0; this->val[1] = this->val[2] = this->val[3] = 0; } template inline Scalar_<_Tp> Scalar_<_Tp>::all(_Tp v0) { return Scalar_<_Tp>(v0, v0, v0, v0); } template inline Scalar_<_Tp>::operator CvScalar() const { return cvScalar(this->val[0], this->val[1], this->val[2], this->val[3]); } template template inline Scalar_<_Tp>::operator Scalar_() const { return Scalar_(saturate_cast(this->val[0]), saturate_cast(this->val[1]), saturate_cast(this->val[2]), saturate_cast(this->val[3])); } template static inline Scalar_<_Tp>& operator += (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { a.val[0] = saturate_cast<_Tp>(a.val[0] + b.val[0]); a.val[1] = saturate_cast<_Tp>(a.val[1] + b.val[1]); a.val[2] = saturate_cast<_Tp>(a.val[2] + b.val[2]); a.val[3] = saturate_cast<_Tp>(a.val[3] + b.val[3]); return a; } template static inline Scalar_<_Tp>& operator -= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { a.val[0] = saturate_cast<_Tp>(a.val[0] - b.val[0]); a.val[1] = saturate_cast<_Tp>(a.val[1] - b.val[1]); a.val[2] = saturate_cast<_Tp>(a.val[2] - b.val[2]); a.val[3] = saturate_cast<_Tp>(a.val[3] - b.val[3]); return a; } template static inline Scalar_<_Tp>& operator *= ( Scalar_<_Tp>& a, _Tp v ) { a.val[0] = saturate_cast<_Tp>(a.val[0] * v); a.val[1] = saturate_cast<_Tp>(a.val[1] * v); a.val[2] = saturate_cast<_Tp>(a.val[2] * v); a.val[3] = saturate_cast<_Tp>(a.val[3] * v); return a; } template inline Scalar_<_Tp> Scalar_<_Tp>::mul(const Scalar_<_Tp>& t, double scale ) const { return Scalar_<_Tp>( saturate_cast<_Tp>(this->val[0]*t.val[0]*scale), saturate_cast<_Tp>(this->val[1]*t.val[1]*scale), saturate_cast<_Tp>(this->val[2]*t.val[2]*scale), saturate_cast<_Tp>(this->val[3]*t.val[3]*scale)); } template static inline bool operator == ( const Scalar_<_Tp>& a, const Scalar_<_Tp>& b ) { return a.val[0] == b.val[0] && a.val[1] == b.val[1] && a.val[2] == b.val[2] && a.val[3] == b.val[3]; } template static inline bool operator != ( const Scalar_<_Tp>& a, const Scalar_<_Tp>& b ) { return a.val[0] != b.val[0] || a.val[1] != b.val[1] || a.val[2] != b.val[2] || a.val[3] != b.val[3]; } template static inline Scalar_<_Tp> operator + (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { return Scalar_<_Tp>(saturate_cast<_Tp>(a.val[0] + b.val[0]), saturate_cast<_Tp>(a.val[1] + b.val[1]), saturate_cast<_Tp>(a.val[2] + b.val[2]), saturate_cast<_Tp>(a.val[3] + b.val[3])); } template static inline Scalar_<_Tp> operator - (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { return Scalar_<_Tp>(saturate_cast<_Tp>(a.val[0] - b.val[0]), saturate_cast<_Tp>(a.val[1] - b.val[1]), saturate_cast<_Tp>(a.val[2] - b.val[2]), saturate_cast<_Tp>(a.val[3] - b.val[3])); } template static inline Scalar_<_Tp> operator * (const Scalar_<_Tp>& a, _Tp alpha) { return Scalar_<_Tp>(saturate_cast<_Tp>(a.val[0] * alpha), saturate_cast<_Tp>(a.val[1] * alpha), saturate_cast<_Tp>(a.val[2] * alpha), saturate_cast<_Tp>(a.val[3] * alpha)); } template static inline Scalar_<_Tp> operator * (_Tp alpha, const Scalar_<_Tp>& a) { return a*alpha; } template static inline Scalar_<_Tp> operator - (const Scalar_<_Tp>& a) { return Scalar_<_Tp>(saturate_cast<_Tp>(-a.val[0]), saturate_cast<_Tp>(-a.val[1]), saturate_cast<_Tp>(-a.val[2]), saturate_cast<_Tp>(-a.val[3])); } template static inline Scalar_<_Tp> operator * (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { return Scalar_<_Tp>(saturate_cast<_Tp>(a[0]*b[0] - a[1]*b[1] - a[2]*b[2] - a[3]*b[3]), saturate_cast<_Tp>(a[0]*b[1] + a[1]*b[0] + a[2]*b[3] - a[3]*b[2]), saturate_cast<_Tp>(a[0]*b[2] - a[1]*b[3] + a[2]*b[0] + a[3]*b[1]), saturate_cast<_Tp>(a[0]*b[3] + a[1]*b[2] - a[2]*b[1] + a[3]*b[0])); } template static inline Scalar_<_Tp>& operator *= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { a = a*b; return a; } template inline Scalar_<_Tp> Scalar_<_Tp>::conj() const { return Scalar_<_Tp>(saturate_cast<_Tp>(this->val[0]), saturate_cast<_Tp>(-this->val[1]), saturate_cast<_Tp>(-this->val[2]), saturate_cast<_Tp>(-this->val[3])); } template inline bool Scalar_<_Tp>::isReal() const { return this->val[1] == 0 && this->val[2] == 0 && this->val[3] == 0; } template static inline Scalar_<_Tp> operator / (const Scalar_<_Tp>& a, _Tp alpha) { return Scalar_<_Tp>(saturate_cast<_Tp>(a.val[0] / alpha), saturate_cast<_Tp>(a.val[1] / alpha), saturate_cast<_Tp>(a.val[2] / alpha), saturate_cast<_Tp>(a.val[3] / alpha)); } template static inline Scalar_ operator / (const Scalar_& a, float alpha) { float s = 1/alpha; return Scalar_(a.val[0]*s, a.val[1]*s, a.val[2]*s, a.val[3]*s); } template static inline Scalar_ operator / (const Scalar_& a, double alpha) { double s = 1/alpha; return Scalar_(a.val[0]*s, a.val[1]*s, a.val[2]*s, a.val[3]*s); } template static inline Scalar_<_Tp>& operator /= (Scalar_<_Tp>& a, _Tp alpha) { a = a/alpha; return a; } template static inline Scalar_<_Tp> operator / (_Tp a, const Scalar_<_Tp>& b) { _Tp s = a/(b[0]*b[0] + b[1]*b[1] + b[2]*b[2] + b[3]*b[3]); return b.conj()*s; } template static inline Scalar_<_Tp> operator / (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { return a*((_Tp)1/b); } template static inline Scalar_<_Tp>& operator /= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) { a = a/b; return a; } //////////////////////////////// Range ///////////////////////////////// inline Range::Range() : start(0), end(0) {} inline Range::Range(int _start, int _end) : start(_start), end(_end) {} inline Range::Range(const CvSlice& slice) : start(slice.start_index), end(slice.end_index) { if( start == 0 && end == CV_WHOLE_SEQ_END_INDEX ) *this = Range::all(); } inline int Range::size() const { return end - start; } inline bool Range::empty() const { return start == end; } inline Range Range::all() { return Range(INT_MIN, INT_MAX); } static inline bool operator == (const Range& r1, const Range& r2) { return r1.start == r2.start && r1.end == r2.end; } static inline bool operator != (const Range& r1, const Range& r2) { return !(r1 == r2); } static inline bool operator !(const Range& r) { return r.start == r.end; } static inline Range operator & (const Range& r1, const Range& r2) { Range r(std::max(r1.start, r2.start), std::min(r1.end, r2.end)); r.end = std::max(r.end, r.start); return r; } static inline Range& operator &= (Range& r1, const Range& r2) { r1 = r1 & r2; return r1; } static inline Range operator + (const Range& r1, int delta) { return Range(r1.start + delta, r1.end + delta); } static inline Range operator + (int delta, const Range& r1) { return Range(r1.start + delta, r1.end + delta); } static inline Range operator - (const Range& r1, int delta) { return r1 + (-delta); } inline Range::operator CvSlice() const { return *this != Range::all() ? cvSlice(start, end) : CV_WHOLE_SEQ; } //////////////////////////////// Vector //////////////////////////////// // template vector class. It is similar to STL's vector, // with a few important differences: // 1) it can be created on top of user-allocated data w/o copying it // 2) vector b = a means copying the header, // not the underlying data (use clone() to make a deep copy) template class CV_EXPORTS Vector { public: typedef _Tp value_type; typedef _Tp* iterator; typedef const _Tp* const_iterator; typedef _Tp& reference; typedef const _Tp& const_reference; struct CV_EXPORTS Hdr { Hdr() : data(0), datastart(0), refcount(0), size(0), capacity(0) {}; _Tp* data; _Tp* datastart; int* refcount; size_t size; size_t capacity; }; Vector() {} Vector(size_t _size) { resize(_size); } Vector(size_t _size, const _Tp& val) { resize(_size); for(size_t i = 0; i < _size; i++) hdr.data[i] = val; } Vector(_Tp* _data, size_t _size, bool _copyData=false) { set(_data, _size, _copyData); } template Vector(const Vec<_Tp, n>& vec) { set((_Tp*)&vec.val[0], n, true); } Vector(const std::vector<_Tp>& vec, bool _copyData=false) { set(!vec.empty() ? (_Tp*)&vec[0] : 0, vec.size(), _copyData); } Vector(const Vector& d) { *this = d; } Vector(const Vector& d, const Range& r_) { Range r = r_ == Range::all() ? Range(0, d.size()) : r_; /*if( r == Range::all() ) r = Range(0, d.size());*/ if( r.size() > 0 && r.start >= 0 && r.end <= d.size() ) { if( d.hdr.refcount ) CV_XADD(d.hdr.refcount, 1); hdr.refcount = d.hdr.refcount; hdr.datastart = d.hdr.datastart; hdr.data = d.hdr.data + r.start; hdr.capacity = hdr.size = r.size(); } } Vector<_Tp>& operator = (const Vector& d) { if( this != &d ) { if( d.hdr.refcount ) CV_XADD(d.hdr.refcount, 1); release(); hdr = d.hdr; } return *this; } ~Vector() { release(); } Vector<_Tp> clone() const { return hdr.data ? Vector<_Tp>(hdr.data, hdr.size, true) : Vector<_Tp>(); } void copyTo(Vector<_Tp>& vec) const { size_t i, sz = size(); vec.resize(sz); const _Tp* src = hdr.data; _Tp* dst = vec.hdr.data; for( i = 0; i < sz; i++ ) dst[i] = src[i]; } void copyTo(std::vector<_Tp>& vec) const { size_t i, sz = size(); vec.resize(sz); const _Tp* src = hdr.data; _Tp* dst = sz ? &vec[0] : 0; for( i = 0; i < sz; i++ ) dst[i] = src[i]; } operator CvMat() const { return cvMat((int)size(), 1, type(), (void*)hdr.data); } _Tp& operator [] (size_t i) { CV_DbgAssert( i < size() ); return hdr.data[i]; } const _Tp& operator [] (size_t i) const { CV_DbgAssert( i < size() ); return hdr.data[i]; } Vector operator() (const Range& r) const { return Vector(*this, r); } _Tp& back() { CV_DbgAssert(!empty()); return hdr.data[hdr.size-1]; } const _Tp& back() const { CV_DbgAssert(!empty()); return hdr.data[hdr.size-1]; } _Tp& front() { CV_DbgAssert(!empty()); return hdr.data[0]; } const _Tp& front() const { CV_DbgAssert(!empty()); return hdr.data[0]; } _Tp* begin() { return hdr.data; } _Tp* end() { return hdr.data + hdr.size; } const _Tp* begin() const { return hdr.data; } const _Tp* end() const { return hdr.data + hdr.size; } void addref() { if( hdr.refcount ) CV_XADD(hdr.refcount, 1); } void release() { if( hdr.refcount && CV_XADD(hdr.refcount, -1) == 1 ) { delete[] hdr.datastart; delete hdr.refcount; } hdr = Hdr(); } void set(_Tp* _data, size_t _size, bool _copyData=false) { if( !_copyData ) { release(); hdr.data = hdr.datastart = _data; hdr.size = hdr.capacity = _size; hdr.refcount = 0; } else { reserve(_size); for( size_t i = 0; i < _size; i++ ) hdr.data[i] = _data[i]; hdr.size = _size; } } void reserve(size_t newCapacity) { _Tp* newData; int* newRefcount; size_t i, oldSize = hdr.size; if( (!hdr.refcount || *hdr.refcount == 1) && hdr.capacity >= newCapacity ) return; newCapacity = std::max(newCapacity, oldSize); newData = new _Tp[newCapacity]; newRefcount = new int(1); for( i = 0; i < oldSize; i++ ) newData[i] = hdr.data[i]; release(); hdr.data = hdr.datastart = newData; hdr.capacity = newCapacity; hdr.size = oldSize; hdr.refcount = newRefcount; } void resize(size_t newSize) { size_t i; newSize = std::max(newSize, (size_t)0); if( (!hdr.refcount || *hdr.refcount == 1) && hdr.size == newSize ) return; if( newSize > hdr.capacity ) reserve(std::max(newSize, std::max((size_t)4, hdr.capacity*2))); for( i = hdr.size; i < newSize; i++ ) hdr.data[i] = _Tp(); hdr.size = newSize; } Vector<_Tp>& push_back(const _Tp& elem) { if( hdr.size == hdr.capacity ) reserve( std::max((size_t)4, hdr.capacity*2) ); hdr.data[hdr.size++] = elem; return *this; } Vector<_Tp>& pop_back() { if( hdr.size > 0 ) --hdr.size; return *this; } size_t size() const { return hdr.size; } size_t capacity() const { return hdr.capacity; } bool empty() const { return hdr.size == 0; } void clear() { resize(0); } int type() const { return DataType<_Tp>::type; } protected: Hdr hdr; }; template inline typename DataType<_Tp>::work_type dot(const Vector<_Tp>& v1, const Vector<_Tp>& v2) { typedef typename DataType<_Tp>::work_type _Tw; size_t i = 0; const size_t n = v1.size(); assert(v1.size() == v2.size()); _Tw s = 0; if( n > 0 ) { const _Tp *ptr1 = &v1[0], *ptr2 = &v2[0]; #if CV_ENABLE_UNROLLED const size_t n2 = (n > 4) ? n : 4; for(; i <= n2 - 4; i += 4 ) s += (_Tw)ptr1[i]*ptr2[i] + (_Tw)ptr1[i+1]*ptr2[i+1] + (_Tw)ptr1[i+2]*ptr2[i+2] + (_Tw)ptr1[i+3]*ptr2[i+3]; #endif for( ; i < n; i++ ) s += (_Tw)ptr1[i]*ptr2[i]; } return s; } // Multiply-with-Carry RNG inline RNG::RNG() { state = 0xffffffff; } inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; } inline unsigned RNG::next() { state = (uint64)(unsigned)state*CV_RNG_COEFF + (unsigned)(state >> 32); return (unsigned)state; } inline RNG::operator uchar() { return (uchar)next(); } inline RNG::operator schar() { return (schar)next(); } inline RNG::operator ushort() { return (ushort)next(); } inline RNG::operator short() { return (short)next(); } inline RNG::operator unsigned() { return next(); } inline unsigned RNG::operator ()(unsigned N) {return (unsigned)uniform(0,N);} inline unsigned RNG::operator ()() {return next();} inline RNG::operator int() { return (int)next(); } // * (2^32-1)^-1 inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; } inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next())*5.4210108624275221700372640043497e-20; } inline int RNG::uniform(int a, int b) { return a == b ? a : next()%(b - a) + a; } inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; } inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; } inline TermCriteria::TermCriteria() : type(0), maxCount(0), epsilon(0) {} inline TermCriteria::TermCriteria(int _type, int _maxCount, double _epsilon) : type(_type), maxCount(_maxCount), epsilon(_epsilon) {} inline TermCriteria::TermCriteria(const CvTermCriteria& criteria) : type(criteria.type), maxCount(criteria.max_iter), epsilon(criteria.epsilon) {} inline TermCriteria::operator CvTermCriteria() const { return cvTermCriteria(type, maxCount, epsilon); } inline uchar* LineIterator::operator *() { return ptr; } inline LineIterator& LineIterator::operator ++() { int mask = err < 0 ? -1 : 0; err += minusDelta + (plusDelta & mask); ptr += minusStep + (plusStep & mask); return *this; } inline LineIterator LineIterator::operator ++(int) { LineIterator it = *this; ++(*this); return it; } inline Point LineIterator::pos() const { Point p; p.y = (int)((ptr - ptr0)/step); p.x = (int)(((ptr - ptr0) - p.y*step)/elemSize); return p; } /////////////////////////////// AutoBuffer //////////////////////////////////////// template inline AutoBuffer<_Tp, fixed_size>::AutoBuffer() { ptr = buf; size = fixed_size; } template inline AutoBuffer<_Tp, fixed_size>::AutoBuffer(size_t _size) { ptr = buf; size = fixed_size; allocate(_size); } template inline AutoBuffer<_Tp, fixed_size>::~AutoBuffer() { deallocate(); } template inline void AutoBuffer<_Tp, fixed_size>::allocate(size_t _size) { if(_size <= size) return; deallocate(); if(_size > fixed_size) { ptr = cv::allocate<_Tp>(_size); size = _size; } } template inline void AutoBuffer<_Tp, fixed_size>::deallocate() { if( ptr != buf ) { cv::deallocate<_Tp>(ptr, size); ptr = buf; size = fixed_size; } } template inline AutoBuffer<_Tp, fixed_size>::operator _Tp* () { return ptr; } template inline AutoBuffer<_Tp, fixed_size>::operator const _Tp* () const { return ptr; } /////////////////////////////////// Ptr //////////////////////////////////////// template inline Ptr<_Tp>::Ptr() : obj(0), refcount(0) {} template inline Ptr<_Tp>::Ptr(_Tp* _obj) : obj(_obj) { if(obj) { refcount = (int*)fastMalloc(sizeof(*refcount)); *refcount = 1; } else refcount = 0; } template inline void Ptr<_Tp>::addref() { if( refcount ) CV_XADD(refcount, 1); } template inline void Ptr<_Tp>::release() { if( refcount && CV_XADD(refcount, -1) == 1 ) { delete_obj(); fastFree(refcount); } refcount = 0; obj = 0; } template inline void Ptr<_Tp>::delete_obj() { if( obj ) delete obj; } template inline Ptr<_Tp>::~Ptr() { release(); } template inline Ptr<_Tp>::Ptr(const Ptr<_Tp>& _ptr) { obj = _ptr.obj; refcount = _ptr.refcount; addref(); } template inline Ptr<_Tp>& Ptr<_Tp>::operator = (const Ptr<_Tp>& _ptr) { int* _refcount = _ptr.refcount; if( _refcount ) CV_XADD(_refcount, 1); release(); obj = _ptr.obj; refcount = _refcount; return *this; } template inline _Tp* Ptr<_Tp>::operator -> () { return obj; } template inline const _Tp* Ptr<_Tp>::operator -> () const { return obj; } template inline Ptr<_Tp>::operator _Tp* () { return obj; } template inline Ptr<_Tp>::operator const _Tp*() const { return obj; } template inline bool Ptr<_Tp>::empty() const { return obj == 0; } template template Ptr<_Tp>::Ptr(const Ptr<_Tp2>& p) : obj(0), refcount(0) { if (p.empty()) return; _Tp* p_casted = dynamic_cast<_Tp*>(p.obj); if (!p_casted) return; obj = p_casted; refcount = p.refcount; addref(); } template template inline Ptr<_Tp2> Ptr<_Tp>::ptr() { Ptr<_Tp2> p; if( !obj ) return p; _Tp2* obj_casted = dynamic_cast<_Tp2*>(obj); if (!obj_casted) return p; if( refcount ) CV_XADD(refcount, 1); p.obj = obj_casted; p.refcount = refcount; return p; } template template inline const Ptr<_Tp2> Ptr<_Tp>::ptr() const { Ptr<_Tp2> p; if( !obj ) return p; _Tp2* obj_casted = dynamic_cast<_Tp2*>(obj); if (!obj_casted) return p; if( refcount ) CV_XADD(refcount, 1); p.obj = obj_casted; p.refcount = refcount; return p; } //// specializied implementations of Ptr::delete_obj() for classic OpenCV types template<> CV_EXPORTS void Ptr::delete_obj(); template<> CV_EXPORTS void Ptr::delete_obj(); template<> CV_EXPORTS void Ptr::delete_obj(); template<> CV_EXPORTS void Ptr::delete_obj(); template<> CV_EXPORTS void Ptr::delete_obj(); template<> CV_EXPORTS void Ptr::delete_obj(); //////////////////////////////////////// XML & YAML I/O //////////////////////////////////// CV_EXPORTS_W void write( FileStorage& fs, const string& name, int value ); CV_EXPORTS_W void write( FileStorage& fs, const string& name, float value ); CV_EXPORTS_W void write( FileStorage& fs, const string& name, double value ); CV_EXPORTS_W void write( FileStorage& fs, const string& name, const string& value ); template inline void write(FileStorage& fs, const _Tp& value) { write(fs, string(), value); } CV_EXPORTS void writeScalar( FileStorage& fs, int value ); CV_EXPORTS void writeScalar( FileStorage& fs, float value ); CV_EXPORTS void writeScalar( FileStorage& fs, double value ); CV_EXPORTS void writeScalar( FileStorage& fs, const string& value ); template<> inline void write( FileStorage& fs, const int& value ) { writeScalar(fs, value); } template<> inline void write( FileStorage& fs, const float& value ) { writeScalar(fs, value); } template<> inline void write( FileStorage& fs, const double& value ) { writeScalar(fs, value); } template<> inline void write( FileStorage& fs, const string& value ) { writeScalar(fs, value); } template inline void write(FileStorage& fs, const Point_<_Tp>& pt ) { write(fs, pt.x); write(fs, pt.y); } template inline void write(FileStorage& fs, const Point3_<_Tp>& pt ) { write(fs, pt.x); write(fs, pt.y); write(fs, pt.z); } template inline void write(FileStorage& fs, const Size_<_Tp>& sz ) { write(fs, sz.width); write(fs, sz.height); } template inline void write(FileStorage& fs, const Complex<_Tp>& c ) { write(fs, c.re); write(fs, c.im); } template inline void write(FileStorage& fs, const Rect_<_Tp>& r ) { write(fs, r.x); write(fs, r.y); write(fs, r.width); write(fs, r.height); } template inline void write(FileStorage& fs, const Vec<_Tp, cn>& v ) { for(int i = 0; i < cn; i++) write(fs, v.val[i]); } template inline void write(FileStorage& fs, const Scalar_<_Tp>& s ) { write(fs, s.val[0]); write(fs, s.val[1]); write(fs, s.val[2]); write(fs, s.val[3]); } inline void write(FileStorage& fs, const Range& r ) { write(fs, r.start); write(fs, r.end); } class CV_EXPORTS WriteStructContext { public: WriteStructContext(FileStorage& _fs, const string& name, int flags, const string& typeName=string()); ~WriteStructContext(); FileStorage* fs; }; template inline void write(FileStorage& fs, const string& name, const Point_<_Tp>& pt ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); write(fs, pt.x); write(fs, pt.y); } template inline void write(FileStorage& fs, const string& name, const Point3_<_Tp>& pt ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); write(fs, pt.x); write(fs, pt.y); write(fs, pt.z); } template inline void write(FileStorage& fs, const string& name, const Size_<_Tp>& sz ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); write(fs, sz.width); write(fs, sz.height); } template inline void write(FileStorage& fs, const string& name, const Complex<_Tp>& c ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); write(fs, c.re); write(fs, c.im); } template inline void write(FileStorage& fs, const string& name, const Rect_<_Tp>& r ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); write(fs, r.x); write(fs, r.y); write(fs, r.width); write(fs, r.height); } template inline void write(FileStorage& fs, const string& name, const Vec<_Tp, cn>& v ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); for(int i = 0; i < cn; i++) write(fs, v.val[i]); } template inline void write(FileStorage& fs, const string& name, const Scalar_<_Tp>& s ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); write(fs, s.val[0]); write(fs, s.val[1]); write(fs, s.val[2]); write(fs, s.val[3]); } inline void write(FileStorage& fs, const string& name, const Range& r ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+CV_NODE_FLOW); write(fs, r.start); write(fs, r.end); } template class CV_EXPORTS VecWriterProxy { public: VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} void operator()(const vector<_Tp>& vec) const { size_t i, count = vec.size(); for( i = 0; i < count; i++ ) write( *fs, vec[i] ); } FileStorage* fs; }; template class CV_EXPORTS VecWriterProxy<_Tp,1> { public: VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} void operator()(const vector<_Tp>& vec) const { int _fmt = DataType<_Tp>::fmt; char fmt[] = { (char)((_fmt>>8)+'1'), (char)_fmt, '\0' }; fs->writeRaw( string(fmt), !vec.empty() ? (uchar*)&vec[0] : 0, vec.size()*sizeof(_Tp) ); } FileStorage* fs; }; template static inline void write( FileStorage& fs, const vector<_Tp>& vec ) { VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs); w(vec); } template static inline void write( FileStorage& fs, const string& name, const vector<_Tp>& vec ) { WriteStructContext ws(fs, name, CV_NODE_SEQ+(DataType<_Tp>::fmt != 0 ? CV_NODE_FLOW : 0)); write(fs, vec); } CV_EXPORTS_W void write( FileStorage& fs, const string& name, const Mat& value ); CV_EXPORTS void write( FileStorage& fs, const string& name, const SparseMat& value ); template static inline FileStorage& operator << (FileStorage& fs, const _Tp& value) { if( !fs.isOpened() ) return fs; if( fs.state == FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP ) CV_Error( CV_StsError, "No element name has been given" ); write( fs, fs.elname, value ); if( fs.state & FileStorage::INSIDE_MAP ) fs.state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP; return fs; } CV_EXPORTS FileStorage& operator << (FileStorage& fs, const string& str); static inline FileStorage& operator << (FileStorage& fs, const char* str) { return (fs << string(str)); } inline FileNode::FileNode() : fs(0), node(0) {} inline FileNode::FileNode(const CvFileStorage* _fs, const CvFileNode* _node) : fs(_fs), node(_node) {} inline FileNode::FileNode(const FileNode& _node) : fs(_node.fs), node(_node.node) {} inline int FileNode::type() const { return !node ? NONE : (node->tag & TYPE_MASK); } inline bool FileNode::empty() const { return node == 0; } inline bool FileNode::isNone() const { return type() == NONE; } inline bool FileNode::isSeq() const { return type() == SEQ; } inline bool FileNode::isMap() const { return type() == MAP; } inline bool FileNode::isInt() const { return type() == INT; } inline bool FileNode::isReal() const { return type() == REAL; } inline bool FileNode::isString() const { return type() == STR; } inline bool FileNode::isNamed() const { return !node ? false : (node->tag & NAMED) != 0; } inline size_t FileNode::size() const { int t = type(); return t == MAP ? ((CvSet*)node->data.map)->active_count : t == SEQ ? node->data.seq->total : (size_t)!isNone(); } inline CvFileNode* FileNode::operator *() { return (CvFileNode*)node; } inline const CvFileNode* FileNode::operator* () const { return node; } static inline void read(const FileNode& node, int& value, int default_value) { value = !node.node ? default_value : CV_NODE_IS_INT(node.node->tag) ? node.node->data.i : CV_NODE_IS_REAL(node.node->tag) ? cvRound(node.node->data.f) : 0x7fffffff; } static inline void read(const FileNode& node, bool& value, bool default_value) { int temp; read(node, temp, (int)default_value); value = temp != 0; } static inline void read(const FileNode& node, uchar& value, uchar default_value) { int temp; read(node, temp, (int)default_value); value = saturate_cast(temp); } static inline void read(const FileNode& node, schar& value, schar default_value) { int temp; read(node, temp, (int)default_value); value = saturate_cast(temp); } static inline void read(const FileNode& node, ushort& value, ushort default_value) { int temp; read(node, temp, (int)default_value); value = saturate_cast(temp); } static inline void read(const FileNode& node, short& value, short default_value) { int temp; read(node, temp, (int)default_value); value = saturate_cast(temp); } static inline void read(const FileNode& node, float& value, float default_value) { value = !node.node ? default_value : CV_NODE_IS_INT(node.node->tag) ? (float)node.node->data.i : CV_NODE_IS_REAL(node.node->tag) ? (float)node.node->data.f : 1e30f; } static inline void read(const FileNode& node, double& value, double default_value) { value = !node.node ? default_value : CV_NODE_IS_INT(node.node->tag) ? (double)node.node->data.i : CV_NODE_IS_REAL(node.node->tag) ? node.node->data.f : 1e300; } static inline void read(const FileNode& node, string& value, const string& default_value) { value = !node.node ? default_value : CV_NODE_IS_STRING(node.node->tag) ? string(node.node->data.str.ptr) : string(""); } CV_EXPORTS_W void read(const FileNode& node, Mat& mat, const Mat& default_mat=Mat() ); CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat=SparseMat() ); inline FileNode::operator int() const { int value; read(*this, value, 0); return value; } inline FileNode::operator float() const { float value; read(*this, value, 0.f); return value; } inline FileNode::operator double() const { double value; read(*this, value, 0.); return value; } inline FileNode::operator string() const { string value; read(*this, value, value); return value; } inline void FileNode::readRaw( const string& fmt, uchar* vec, size_t len ) const { begin().readRaw( fmt, vec, len ); } template class CV_EXPORTS VecReaderProxy { public: VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} void operator()(vector<_Tp>& vec, size_t count) const { count = std::min(count, it->remaining); vec.resize(count); for( size_t i = 0; i < count; i++, ++(*it) ) read(**it, vec[i], _Tp()); } FileNodeIterator* it; }; template class CV_EXPORTS VecReaderProxy<_Tp,1> { public: VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} void operator()(vector<_Tp>& vec, size_t count) const { size_t remaining = it->remaining, cn = DataType<_Tp>::channels; int _fmt = DataType<_Tp>::fmt; char fmt[] = { (char)((_fmt>>8)+'1'), (char)_fmt, '\0' }; size_t remaining1 = remaining/cn; count = count < remaining1 ? count : remaining1; vec.resize(count); it->readRaw( string(fmt), !vec.empty() ? (uchar*)&vec[0] : 0, count*sizeof(_Tp) ); } FileNodeIterator* it; }; template static inline void read( FileNodeIterator& it, vector<_Tp>& vec, size_t maxCount=(size_t)INT_MAX ) { VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); r(vec, maxCount); } template static inline void read( const FileNode& node, vector<_Tp>& vec, const vector<_Tp>& default_value=vector<_Tp>() ) { if(!node.node) vec = default_value; else { FileNodeIterator it = node.begin(); read( it, vec ); } } inline FileNodeIterator FileNode::begin() const { return FileNodeIterator(fs, node); } inline FileNodeIterator FileNode::end() const { return FileNodeIterator(fs, node, size()); } inline FileNode FileNodeIterator::operator *() const { return FileNode(fs, (const CvFileNode*)reader.ptr); } inline FileNode FileNodeIterator::operator ->() const { return FileNode(fs, (const CvFileNode*)reader.ptr); } template static inline FileNodeIterator& operator >> (FileNodeIterator& it, _Tp& value) { read( *it, value, _Tp()); return ++it; } template static inline FileNodeIterator& operator >> (FileNodeIterator& it, vector<_Tp>& vec) { VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); r(vec, (size_t)INT_MAX); return it; } template static inline void operator >> (const FileNode& n, _Tp& value) { read( n, value, _Tp()); } template static inline void operator >> (const FileNode& n, vector<_Tp>& vec) { FileNodeIterator it = n.begin(); it >> vec; } static inline bool operator == (const FileNodeIterator& it1, const FileNodeIterator& it2) { return it1.fs == it2.fs && it1.container == it2.container && it1.reader.ptr == it2.reader.ptr && it1.remaining == it2.remaining; } static inline bool operator != (const FileNodeIterator& it1, const FileNodeIterator& it2) { return !(it1 == it2); } static inline ptrdiff_t operator - (const FileNodeIterator& it1, const FileNodeIterator& it2) { return it2.remaining - it1.remaining; } static inline bool operator < (const FileNodeIterator& it1, const FileNodeIterator& it2) { return it1.remaining > it2.remaining; } inline FileNode FileStorage::getFirstTopLevelNode() const { FileNode r = root(); FileNodeIterator it = r.begin(); return it != r.end() ? *it : FileNode(); } //////////////////////////////////////// Various algorithms //////////////////////////////////// template static inline _Tp gcd(_Tp a, _Tp b) { if( a < b ) std::swap(a, b); while( b > 0 ) { _Tp r = a % b; a = b; b = r; } return a; } /****************************************************************************************\ Generic implementation of QuickSort algorithm Use it as: vector<_Tp> a; ... sort(a,); The current implementation was derived from *BSD system qsort(): * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. \****************************************************************************************/ template void sort( vector<_Tp>& vec, _LT LT=_LT() ) { int isort_thresh = 7; int sp = 0; struct { _Tp *lb; _Tp *ub; } stack[48]; size_t total = vec.size(); if( total <= 1 ) return; _Tp* arr = &vec[0]; stack[0].lb = arr; stack[0].ub = arr + (total - 1); while( sp >= 0 ) { _Tp* left = stack[sp].lb; _Tp* right = stack[sp--].ub; for(;;) { int i, n = (int)(right - left) + 1, m; _Tp* ptr; _Tp* ptr2; if( n <= isort_thresh ) { insert_sort: for( ptr = left + 1; ptr <= right; ptr++ ) { for( ptr2 = ptr; ptr2 > left && LT(ptr2[0],ptr2[-1]); ptr2--) std::swap( ptr2[0], ptr2[-1] ); } break; } else { _Tp* left0; _Tp* left1; _Tp* right0; _Tp* right1; _Tp* pivot; _Tp* a; _Tp* b; _Tp* c; int swap_cnt = 0; left0 = left; right0 = right; pivot = left + (n/2); if( n > 40 ) { int d = n / 8; a = left, b = left + d, c = left + 2*d; left = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) : (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); a = pivot - d, b = pivot, c = pivot + d; pivot = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) : (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); a = right - 2*d, b = right - d, c = right; right = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) : (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); } a = left, b = pivot, c = right; pivot = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) : (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); if( pivot != left0 ) { std::swap( *pivot, *left0 ); pivot = left0; } left = left1 = left0 + 1; right = right1 = right0; for(;;) { while( left <= right && !LT(*pivot, *left) ) { if( !LT(*left, *pivot) ) { if( left > left1 ) std::swap( *left1, *left ); swap_cnt = 1; left1++; } left++; } while( left <= right && !LT(*right, *pivot) ) { if( !LT(*pivot, *right) ) { if( right < right1 ) std::swap( *right1, *right ); swap_cnt = 1; right1--; } right--; } if( left > right ) break; std::swap( *left, *right ); swap_cnt = 1; left++; right--; } if( swap_cnt == 0 ) { left = left0, right = right0; goto insert_sort; } n = std::min( (int)(left1 - left0), (int)(left - left1) ); for( i = 0; i < n; i++ ) std::swap( left0[i], left[i-n] ); n = std::min( (int)(right0 - right1), (int)(right1 - right) ); for( i = 0; i < n; i++ ) std::swap( left[i], right0[i-n+1] ); n = (int)(left - left1); m = (int)(right1 - right); if( n > 1 ) { if( m > 1 ) { if( n > m ) { stack[++sp].lb = left0; stack[sp].ub = left0 + n - 1; left = right0 - m + 1, right = right0; } else { stack[++sp].lb = right0 - m + 1; stack[sp].ub = right0; left = left0, right = left0 + n - 1; } } else left = left0, right = left0 + n - 1; } else if( m > 1 ) left = right0 - m + 1, right = right0; else break; } } } } template class CV_EXPORTS LessThan { public: bool operator()(const _Tp& a, const _Tp& b) const { return a < b; } }; template class CV_EXPORTS GreaterEq { public: bool operator()(const _Tp& a, const _Tp& b) const { return a >= b; } }; template class CV_EXPORTS LessThanIdx { public: LessThanIdx( const _Tp* _arr ) : arr(_arr) {} bool operator()(int a, int b) const { return arr[a] < arr[b]; } const _Tp* arr; }; template class CV_EXPORTS GreaterEqIdx { public: GreaterEqIdx( const _Tp* _arr ) : arr(_arr) {} bool operator()(int a, int b) const { return arr[a] >= arr[b]; } const _Tp* arr; }; // This function splits the input sequence or set into one or more equivalence classes and // returns the vector of labels - 0-based class indexes for each element. // predicate(a,b) returns true if the two sequence elements certainly belong to the same class. // // The algorithm is described in "Introduction to Algorithms" // by Cormen, Leiserson and Rivest, the chapter "Data structures for disjoint sets" template int partition( const vector<_Tp>& _vec, vector& labels, _EqPredicate predicate=_EqPredicate()) { int i, j, N = (int)_vec.size(); const _Tp* vec = &_vec[0]; const int PARENT=0; const int RANK=1; vector _nodes(N*2); int (*nodes)[2] = (int(*)[2])&_nodes[0]; // The first O(N) pass: create N single-vertex trees for(i = 0; i < N; i++) { nodes[i][PARENT]=-1; nodes[i][RANK] = 0; } // The main O(N^2) pass: merge connected components for( i = 0; i < N; i++ ) { int root = i; // find root while( nodes[root][PARENT] >= 0 ) root = nodes[root][PARENT]; for( j = 0; j < N; j++ ) { if( i == j || !predicate(vec[i], vec[j])) continue; int root2 = j; while( nodes[root2][PARENT] >= 0 ) root2 = nodes[root2][PARENT]; if( root2 != root ) { // unite both trees int rank = nodes[root][RANK], rank2 = nodes[root2][RANK]; if( rank > rank2 ) nodes[root2][PARENT] = root; else { nodes[root][PARENT] = root2; nodes[root2][RANK] += rank == rank2; root = root2; } assert( nodes[root][PARENT] < 0 ); int k = j, parent; // compress the path from node2 to root while( (parent = nodes[k][PARENT]) >= 0 ) { nodes[k][PARENT] = root; k = parent; } // compress the path from node to root k = i; while( (parent = nodes[k][PARENT]) >= 0 ) { nodes[k][PARENT] = root; k = parent; } } } } // Final O(N) pass: enumerate classes labels.resize(N); int nclasses = 0; for( i = 0; i < N; i++ ) { int root = i; while( nodes[root][PARENT] >= 0 ) root = nodes[root][PARENT]; // re-use the rank as the class label if( nodes[root][RANK] >= 0 ) nodes[root][RANK] = ~nclasses++; labels[i] = ~nodes[root][RANK]; } return nclasses; } ////////////////////////////////////////////////////////////////////////////// // bridge C++ => C Seq API CV_EXPORTS schar* seqPush( CvSeq* seq, const void* element=0); CV_EXPORTS schar* seqPushFront( CvSeq* seq, const void* element=0); CV_EXPORTS void seqPop( CvSeq* seq, void* element=0); CV_EXPORTS void seqPopFront( CvSeq* seq, void* element=0); CV_EXPORTS void seqPopMulti( CvSeq* seq, void* elements, int count, int in_front=0 ); CV_EXPORTS void seqRemove( CvSeq* seq, int index ); CV_EXPORTS void clearSeq( CvSeq* seq ); CV_EXPORTS schar* getSeqElem( const CvSeq* seq, int index ); CV_EXPORTS void seqRemoveSlice( CvSeq* seq, CvSlice slice ); CV_EXPORTS void seqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr ); template inline Seq<_Tp>::Seq() : seq(0) {} template inline Seq<_Tp>::Seq( const CvSeq* _seq ) : seq((CvSeq*)_seq) { CV_Assert(!_seq || _seq->elem_size == sizeof(_Tp)); } template inline Seq<_Tp>::Seq( MemStorage& storage, int headerSize ) { CV_Assert(headerSize >= (int)sizeof(CvSeq)); seq = cvCreateSeq(DataType<_Tp>::type, headerSize, sizeof(_Tp), storage); } template inline _Tp& Seq<_Tp>::operator [](int idx) { return *(_Tp*)getSeqElem(seq, idx); } template inline const _Tp& Seq<_Tp>::operator [](int idx) const { return *(_Tp*)getSeqElem(seq, idx); } template inline SeqIterator<_Tp> Seq<_Tp>::begin() const { return SeqIterator<_Tp>(*this); } template inline SeqIterator<_Tp> Seq<_Tp>::end() const { return SeqIterator<_Tp>(*this, true); } template inline size_t Seq<_Tp>::size() const { return seq ? seq->total : 0; } template inline int Seq<_Tp>::type() const { return seq ? CV_MAT_TYPE(seq->flags) : 0; } template inline int Seq<_Tp>::depth() const { return seq ? CV_MAT_DEPTH(seq->flags) : 0; } template inline int Seq<_Tp>::channels() const { return seq ? CV_MAT_CN(seq->flags) : 0; } template inline size_t Seq<_Tp>::elemSize() const { return seq ? seq->elem_size : 0; } template inline size_t Seq<_Tp>::index(const _Tp& elem) const { return cvSeqElemIdx(seq, &elem); } template inline void Seq<_Tp>::push_back(const _Tp& elem) { cvSeqPush(seq, &elem); } template inline void Seq<_Tp>::push_front(const _Tp& elem) { cvSeqPushFront(seq, &elem); } template inline void Seq<_Tp>::push_back(const _Tp* elem, size_t count) { cvSeqPushMulti(seq, elem, (int)count, 0); } template inline void Seq<_Tp>::push_front(const _Tp* elem, size_t count) { cvSeqPushMulti(seq, elem, (int)count, 1); } template inline _Tp& Seq<_Tp>::back() { return *(_Tp*)getSeqElem(seq, -1); } template inline const _Tp& Seq<_Tp>::back() const { return *(const _Tp*)getSeqElem(seq, -1); } template inline _Tp& Seq<_Tp>::front() { return *(_Tp*)getSeqElem(seq, 0); } template inline const _Tp& Seq<_Tp>::front() const { return *(const _Tp*)getSeqElem(seq, 0); } template inline bool Seq<_Tp>::empty() const { return !seq || seq->total == 0; } template inline void Seq<_Tp>::clear() { if(seq) clearSeq(seq); } template inline void Seq<_Tp>::pop_back() { seqPop(seq); } template inline void Seq<_Tp>::pop_front() { seqPopFront(seq); } template inline void Seq<_Tp>::pop_back(_Tp* elem, size_t count) { seqPopMulti(seq, elem, (int)count, 0); } template inline void Seq<_Tp>::pop_front(_Tp* elem, size_t count) { seqPopMulti(seq, elem, (int)count, 1); } template inline void Seq<_Tp>::insert(int idx, const _Tp& elem) { seqInsert(seq, idx, &elem); } template inline void Seq<_Tp>::insert(int idx, const _Tp* elems, size_t count) { CvMat m = cvMat(1, count, DataType<_Tp>::type, elems); seqInsertSlice(seq, idx, &m); } template inline void Seq<_Tp>::remove(int idx) { seqRemove(seq, idx); } template inline void Seq<_Tp>::remove(const Range& r) { seqRemoveSlice(seq, r); } template inline void Seq<_Tp>::copyTo(vector<_Tp>& vec, const Range& range) const { size_t len = !seq ? 0 : range == Range::all() ? seq->total : range.end - range.start; vec.resize(len); if( seq && len ) cvCvtSeqToArray(seq, &vec[0], range); } template inline Seq<_Tp>::operator vector<_Tp>() const { vector<_Tp> vec; copyTo(vec); return vec; } template inline SeqIterator<_Tp>::SeqIterator() { memset(this, 0, sizeof(*this)); } template inline SeqIterator<_Tp>::SeqIterator(const Seq<_Tp>& _seq, bool seekEnd) { cvStartReadSeq(_seq.seq, this); index = seekEnd ? _seq.seq->total : 0; } template inline void SeqIterator<_Tp>::seek(size_t pos) { cvSetSeqReaderPos(this, (int)pos, false); index = pos; } template inline size_t SeqIterator<_Tp>::tell() const { return index; } template inline _Tp& SeqIterator<_Tp>::operator *() { return *(_Tp*)ptr; } template inline const _Tp& SeqIterator<_Tp>::operator *() const { return *(const _Tp*)ptr; } template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator ++() { CV_NEXT_SEQ_ELEM(sizeof(_Tp), *this); if( ++index >= seq->total*2 ) index = 0; return *this; } template inline SeqIterator<_Tp> SeqIterator<_Tp>::operator ++(int) const { SeqIterator<_Tp> it = *this; ++*this; return it; } template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator --() { CV_PREV_SEQ_ELEM(sizeof(_Tp), *this); if( --index < 0 ) index = seq->total*2-1; return *this; } template inline SeqIterator<_Tp> SeqIterator<_Tp>::operator --(int) const { SeqIterator<_Tp> it = *this; --*this; return it; } template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator +=(int delta) { cvSetSeqReaderPos(this, delta, 1); index += delta; int n = seq->total*2; if( index < 0 ) index += n; if( index >= n ) index -= n; return *this; } template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator -=(int delta) { return (*this += -delta); } template inline ptrdiff_t operator - (const SeqIterator<_Tp>& a, const SeqIterator<_Tp>& b) { ptrdiff_t delta = a.index - b.index, n = a.seq->total; if( std::abs(static_cast(delta)) > n ) delta += delta < 0 ? n : -n; return delta; } template inline bool operator == (const SeqIterator<_Tp>& a, const SeqIterator<_Tp>& b) { return a.seq == b.seq && a.index == b.index; } template inline bool operator != (const SeqIterator<_Tp>& a, const SeqIterator<_Tp>& b) { return !(a == b); } template struct CV_EXPORTS RTTIImpl { public: static int isInstance(const void* ptr) { static _ClsName dummy; static void* dummyp = &dummy; union { const void* p; const void** pp; } a, b; a.p = dummyp; b.p = ptr; return *a.pp == *b.pp; } static void release(void** dbptr) { if(dbptr && *dbptr) { delete (_ClsName*)*dbptr; *dbptr = 0; } } static void* read(CvFileStorage* fs, CvFileNode* n) { FileNode fn(fs, n); _ClsName* obj = new _ClsName; if(obj->read(fn)) return obj; delete obj; return 0; } static void write(CvFileStorage* _fs, const char* name, const void* ptr, CvAttrList) { if(ptr && _fs) { FileStorage fs(_fs); fs.fs.addref(); ((const _ClsName*)ptr)->write(fs, string(name)); } } static void* clone(const void* ptr) { if(!ptr) return 0; return new _ClsName(*(const _ClsName*)ptr); } }; class CV_EXPORTS Formatter { public: virtual ~Formatter() {} virtual void write(std::ostream& out, const Mat& m, const int* params=0, int nparams=0) const = 0; virtual void write(std::ostream& out, const void* data, int nelems, int type, const int* params=0, int nparams=0) const = 0; static const Formatter* get(const char* fmt=""); static const Formatter* setDefault(const Formatter* fmt); }; struct CV_EXPORTS Formatted { Formatted(const Mat& m, const Formatter* fmt, const vector& params); Formatted(const Mat& m, const Formatter* fmt, const int* params=0); Mat mtx; const Formatter* fmt; vector params; }; /** Writes a point to an output stream in Matlab notation */ template inline std::ostream& operator<<(std::ostream& out, const Point_<_Tp>& p) { out << "[" << p.x << ", " << p.y << "]"; return out; } /** Writes a point to an output stream in Matlab notation */ template inline std::ostream& operator<<(std::ostream& out, const Point3_<_Tp>& p) { out << "[" << p.x << ", " << p.y << ", " << p.z << "]"; return out; } static inline Formatted format(const Mat& mtx, const char* fmt, const vector& params=vector()) { return Formatted(mtx, Formatter::get(fmt), params); } template static inline Formatted format(const vector >& vec, const char* fmt, const vector& params=vector()) { return Formatted(Mat(vec), Formatter::get(fmt), params); } template static inline Formatted format(const vector >& vec, const char* fmt, const vector& params=vector()) { return Formatted(Mat(vec), Formatter::get(fmt), params); } /** \brief prints Mat to the output stream in Matlab notation * use like @verbatim Mat my_mat = Mat::eye(3,3,CV_32F); std::cout << my_mat; @endverbatim */ static inline std::ostream& operator << (std::ostream& out, const Mat& mtx) { Formatter::get()->write(out, mtx); return out; } /** \brief prints Mat to the output stream allows in the specified notation (see format) * use like @verbatim Mat my_mat = Mat::eye(3,3,CV_32F); std::cout << my_mat; @endverbatim */ static inline std::ostream& operator << (std::ostream& out, const Formatted& fmtd) { fmtd.fmt->write(out, fmtd.mtx); return out; } template static inline std::ostream& operator << (std::ostream& out, const vector >& vec) { Formatter::get()->write(out, Mat(vec)); return out; } template static inline std::ostream& operator << (std::ostream& out, const vector >& vec) { Formatter::get()->write(out, Mat(vec)); return out; } template inline Ptr<_Tp> Algorithm::create(const string& name) { return _create(name).ptr<_Tp>(); } template inline void Algorithm::set(const char* _name, const Ptr<_Tp>& value) { Ptr algo_ptr = value. template ptr(); if (algo_ptr.empty()) { CV_Error( CV_StsUnsupportedFormat, "unknown/unsupported Ptr type of the second parameter of the method Algorithm::set"); } info()->set(this, _name, ParamType::type, &algo_ptr); } template inline void Algorithm::set(const string& _name, const Ptr<_Tp>& value) { this->set<_Tp>(_name.c_str(), value); } template inline typename ParamType<_Tp>::member_type Algorithm::get(const string& _name) const { typename ParamType<_Tp>::member_type value; info()->get(this, _name.c_str(), ParamType<_Tp>::type, &value); return value; } template inline typename ParamType<_Tp>::member_type Algorithm::get(const char* _name) const { typename ParamType<_Tp>::member_type value; info()->get(this, _name, ParamType<_Tp>::type, &value); return value; } template inline void AlgorithmInfo::addParam(Algorithm& algo, const char* parameter, Ptr<_Tp>& value, bool readOnly, Ptr<_Tp> (Algorithm::*getter)(), void (Algorithm::*setter)(const Ptr<_Tp>&), const string& help) { //TODO: static assert: _Tp inherits from _Base addParam_(algo, parameter, ParamType<_Base>::type, &value, readOnly, (Algorithm::Getter)getter, (Algorithm::Setter)setter, help); } template inline void AlgorithmInfo::addParam(Algorithm& algo, const char* parameter, Ptr<_Tp>& value, bool readOnly, Ptr<_Tp> (Algorithm::*getter)(), void (Algorithm::*setter)(const Ptr<_Tp>&), const string& help) { //TODO: static assert: _Tp inherits from Algorithm addParam_(algo, parameter, ParamType::type, &value, readOnly, (Algorithm::Getter)getter, (Algorithm::Setter)setter, help); } } #endif // __cplusplus #endif